GI SLIDE DECK 2018

Selected abstracts from:

Letter from ESDO

DEAR COLLEAGUES

It is our pleasure to present this ESDO slide set which has been designed to highlight and summarise key findings in digestive cancers from the major congresses in 2018. This slide set specifically focuses on the **2018 Gastrointestinal Cancers Symposium** and is available in English, French and Japanese.

The area of clinical research in oncology is a challenging and ever changing environment. Within this environment, we all value access to scientific data and research which helps to educate and inspire further advancements in our roles as scientists, clinicians and educators. I hope you find this review of the latest developments in digestive cancers of benefit to you in your practice. If you would like to share your thoughts with us we would welcome your comments. Please send any correspondence to info@esdo.eu.

Finally, we are also very grateful to Lilly Oncology for their financial, administrative and logistical support in the realisation of this activity.

Yours sincerely,

Eric Van Cutsem
Thomas Seufferlein
Côme Lepage
Wolff Schmiegel
Phillippe Rougier (hon.)

Ulrich Güller
Thomas Grünberger
Tamara Matysiak-Budnik
Jaroslaw Regula
Jean-Luc Van Laethem

(ESDO Governing Board)

european society of digestive oncology

ESDO Medical Oncology Slide Deck

Editors 2018

COLORECTAL CANCERS

Prof Eric Van Cutsem Digestive Oncology, University Hospitals, Leuven, Belgium

Prof Wolff Schmiegel Department of Medicine, Ruhr University, Bochum, Germany

Prof Thomas Gruenberger Department of Surgery I, Rudolf Foundation Clinic, Vienna, Austria

Prof Jaroslaw Regula Department of Gastroenterology and Hepatology, Institute of Oncology, Warsaw, Poland

Prof Jean-Luc Van Laethem Digestive Oncology, Erasme University Hospital, Brussels, Belgium

Prof Thomas Seufferlein Clinic of Internal Medicine I, University of Ulm, Ulm, Germany

Prof Ulrich Güller Medical Oncology & Hematology, Kantonsspital St Gallen, St Gallen, Switzerland

GASTRO-OESOPHAGEAL AND NEUROENDOCRINE TUMOURS

Prof Côme Lepage University Hospital & INSERM, Dijon, France

Prof Tamara Matysiak Hepato-Gastroenterology & Digestive Oncology, Institute of Digestive Diseases,

Nantes, France

BIOMARKERS

Prof Eric Van Cutsem Digestive Oncology, University Hospitals, Leuven, Belgium

Prof Thomas Seufferlein Clinic of Internal Medicine I, University of Ulm, Ulm, Germany

Glossary

1L	first-line	gGT	gamma-glutamyl transpeptidase	PD-L1	programmed death-ligand 1
5FU	5-fluorouracil	HBV	hepatitis B virus	PK	pharmacokinetics
AE	adverse event	HCV	hepatitis C virus	(m)PFS	(median) progression-free
ALT	alanine aminotransferase	HCC	hepatocellular carcinoma		survival
AST	aspartate aminotransferase	HER2	human epidermal growth factor	PR	partial response
BICR	blinded independent central review		receptor 2	PS	performance status
bid	twice daily	HIPEC	hyperthermic intraperitoneal	q2/3w	every 2/3 weeks
BOR	best overall response		chemotherapy	QoL	quality of life
CAPOX	capecitabine + oxaliplatin	HR	hazard ratio	R	randomised
CI	confidence interval	HRQoL	health-related quality of life	RAMIE	robot-assisted minimally invasive
CPK	creatinine phosphokinase	IHC	immunohistochemistry		thoraco-laparoscopic
CR	complete response	IV	intravenous		oesophagectomy
(m)CRC	(metastatic) colorectal cancer	IP	intraperitoneal	RECIST	Response Evaluation Criteria In Solid
CRS	cytoreductive surgery	LMWH	low-molecular-weight heparin		Tumors
CT	chemotherapy	mAb	monoclonal antibody	RFS	recurrence-free survival
D	day	MCDC	modified Clavien-Dindo	RT	radiotherapy
DCR	disease control rate		classification	RT-PCR	reverse transcription polymerase
DFS	disease-free survival	mFOLFIRINOX	modified leucovorin +		chain reaction
dMMR	DNA mismatch repair deficient		5-fluorouracil + irinotecan +	S-1	tegafur + gimeracil + oteracil
DoR	duration of response		oxaliplatin	SAE	serious adverse event
ECOG	Eastern Cooperative Oncology Group	MMR	mismatch repair	SD	stable disease
EHS	extrahepatic spread	mRNA	messenger RNA	SE	standard error
EIPL	extensive intraoperative peritoneal	MSI-H	microsatellite instability-high	SoC	standard of care
	lavage	MSS	microsatellite stable	SSI	surgical site infection
EpCAM	epithelial cell adhesion molecule	MVI	macroscopic vascular invasion	TCR	treatment completion rate
FFPE	formalin fixed paraffin-embedded	NE	not evaluable	TIC	tumour-infiltrating immune cells
FLOT	docetaxel + 5-fluorouracil +	ORR	objective response rate	TRAE	treatment-related adverse event
	leucovorin + oxaliplatin	(m)OS	(median) overall survival	VAS	visual analogue scale
FOLFOX	leucovorin + 5-fluorouracil +	OTE	open transthoracic	WBC	white blood cell
	oxaliplatin		oesophagectomy		
GEJ	gastro-oesophageal junction	PD	progressive disease		
GEM	gemcitabine	PD-1	programmed death-protein 1		

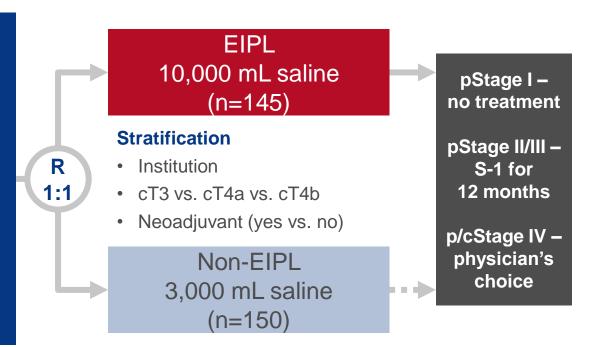
Contents

•	Cancers of the oesophagus and stomach	<u>6</u>
•	Cancers of the pancreas, small bowel and hepatobiliary tract	41
	- Pancreatic cancer	42
	- Hepatocellular carcinoma	48
	- Biliary tract cancer	<u>54</u>
•	Cancers of the colon, rectum and anus	60

Note: To jump to a section, right click on the number and 'Open Hyperlink'

CANCERS OF THE OESOPHAGUS AND STOMACH

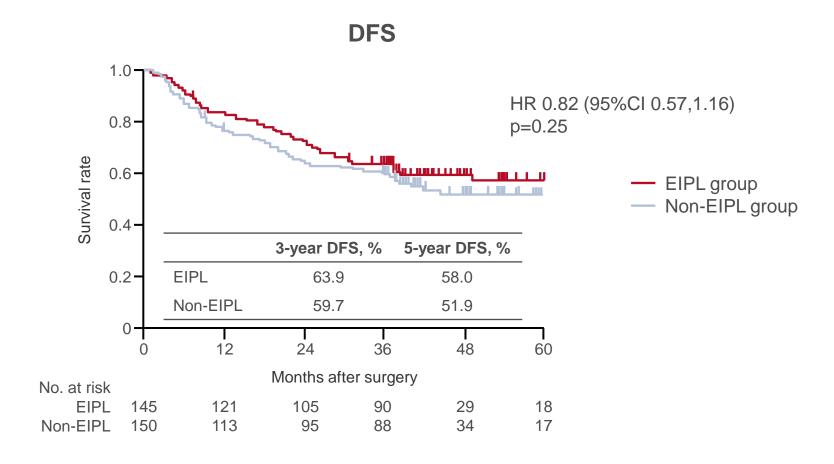
Study objective

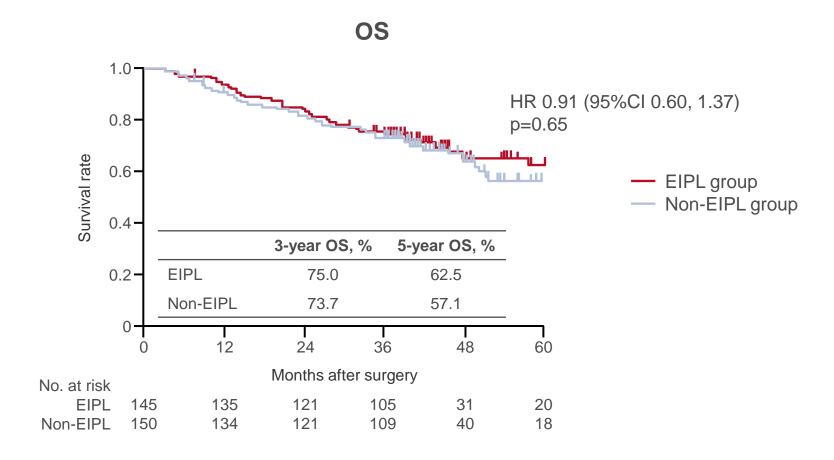

 To show superiority of extensive intraoperative peritoneal lavage (EIPL) over conventional irrigation in patients with ≥T3 gastric cancer

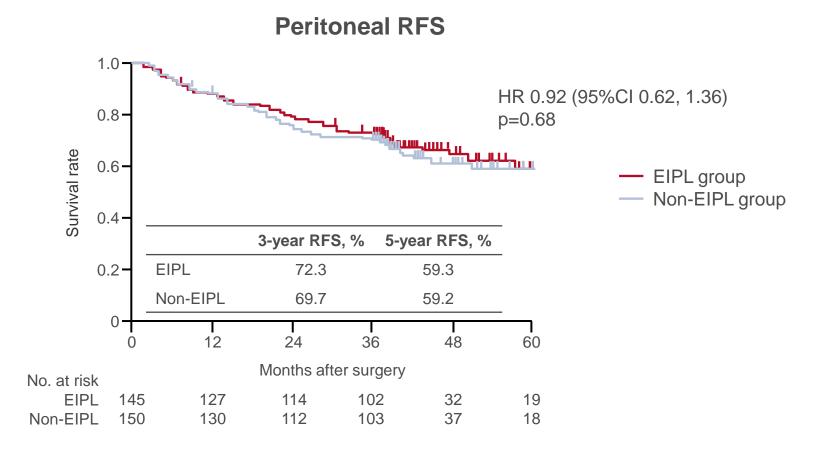
Key patient inclusion criteria

- Advanced gastric adenocarcinoma
- cT3(SS), T4a(SE) or T4b(SI)
- cH0 and M0
- R0 surgery possible
- Neoadjuvant CT allowed
- ECOG PS 0-1 (n=314)

PRIMARY ENDPOINT


DFS

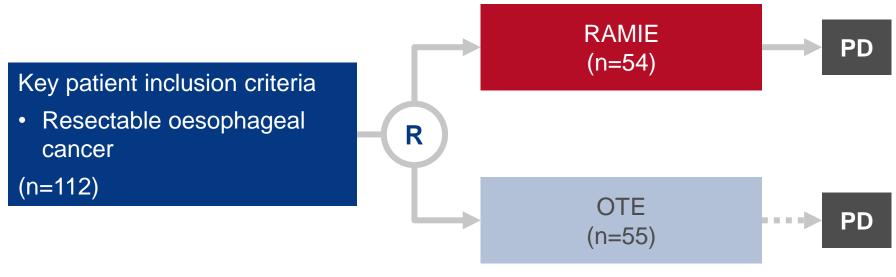



SECONDARY ENDPOINTS

OS, peritoneal RFS, safety

Key results

Key results (cont.)


Grade ≥2 surgical complications	EIPL (n=145)	Non-EIPL (n=150)	p-value
Overall, n (%)	29 (20.0)	41 (27.3)	0.17
Intra-abdominal SSI, n (%)	15 (10.3)	19 (12.7)	0.59
Leakage	3 (2.1)	3 (2.0)	0.97
Pancreatic fistula	7 (4.8)	14 (9.3)	0.13
Abscess	11 (7.6)	7 (4.7)	0.30

Conclusions

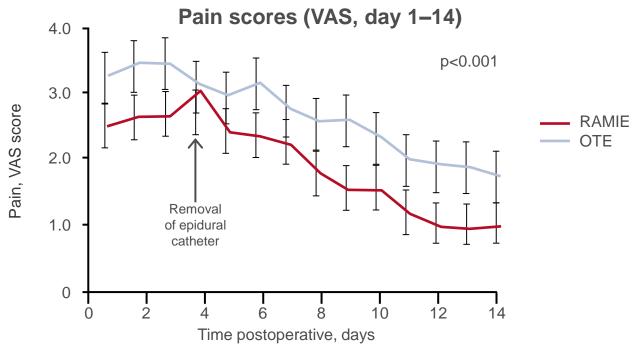
- In patients with advanced gastric cancer, EIPL was tolerable, but was not found to be superior to conventional irrigation
 - In patients with intra-abdominal SSI, EIPL demonstrated a trend for decreasing recurrence

Study objective

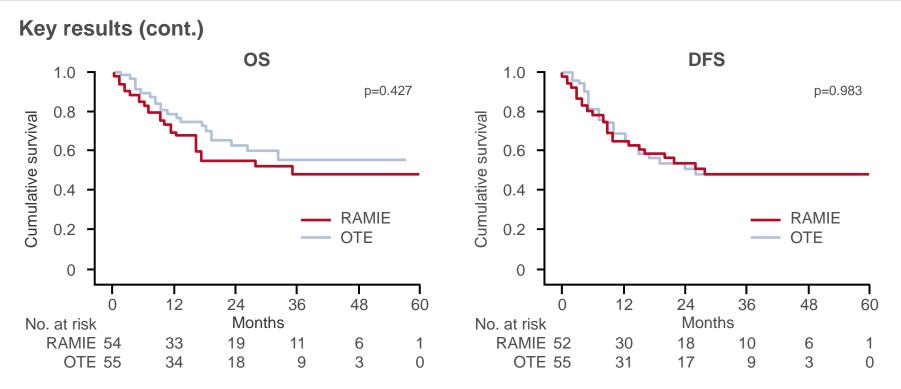
 To compare the efficacy and safety of robot-assisted minimally invasive thoracolaparoscopic oesophagectomy (RAMIE) vs. open transthoracic oesophagectomy (OTE) in patients with resectable intrathoracic oesophageal cancer

PRIMARY ENDPOINT

 Overall postoperative complications (MCDC grade 2–5)


SECONDARY ENDPOINTS

 Resource use, QoL, postoperative pain, OS, DFS


Key results

Postoperative complications, n (%)	RAMIE (n=54)	OTE (n=55)	p-value
Overall (MCDC 2, 3, 4 and 5)	32 (59)	44 (80)	0.02
Pulmonary complications	17 (32)	32 (58)	0.005
Cardiac complications	12 (22)	26 (47)	0.006
Wound infections	2 (4)	8 (14)	0.09
Anastomotic leakage	13 (24)	11 (20)	0.57
Mediastinitis	12 (22)	11 (20)	0.42
Chylothorax	17 (32)	12 (22)	0.69
Recurrent laryngeal nerve injury	5 (9)	6 (11)	0.78

	RAMIE (n=54)	OTE (n=55)	p-value
In-hospital mortality, n (%)	2 (4)	1 (2)	0.62
Functional recovery within 2 weeks, n (%)	38 (70)	28 (51)	0.04
Short-term QoL (QLQ-C30) HRQoL (discharge) HRQoL (6 weeks) Physical functioning (discharge) Physical functioning (6 weeks)	57.9 (49.9–66.1) 68.7 (61.5–75.9) 54.5 (45.8–63.3) 69.3 (61.6–76.9)	44.6 (36.7–52.5) 57.6 (50.6–64.6) 41.0 (32.4–49.6) 58.6 (51.1–66.0)	0.02 0.03 0.03 0.049
Radicality of surgery, n (%) R0 R1 Unresectable	50 (93) 2 (4) 2 (4)	53 (96) 2 (4) 0 (0)	0.35

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Overall
RAMIE	2.45	2.58	2.58	2.97	2.38	2.29	2.18	1.73	1.48	1.48	1.13	0.95	0.89	0.93	1.86
OTE	3.22	3.39	3.41	3.09	2.91	3.13	2.71	2.51	2.58	2.31	1.97	1.88	1.85	1.72	2.62
SE	0.40	0.40	0.40	0.40	0.40	0.40	0.39	0.39	0.39	0.39	0.39	0.40	0.40	0.40	0.13
p-value	0.05	0.04	0.04	0.76	0.18	0.03	0.15	0.05	0.01	0.03	0.03	0.02	0.02	0.05	<0.001

Conclusions

- In patients with resectable oesophageal cancer, compared with OTE, RAMIE resulted in fewer postoperative complications, with lower postoperative pain, better short-term QoL and a better short-term postoperative functional recovery
- There was no difference in oncological outcomes

Study objective

 To evaluate the impact of hyperthermic intraperitoneal chemotherapy (HIPEC) after complete cytoreductive surgery (CRS) compared with CRS alone on survival and postoperative outcomes

Key patient inclusion criteria

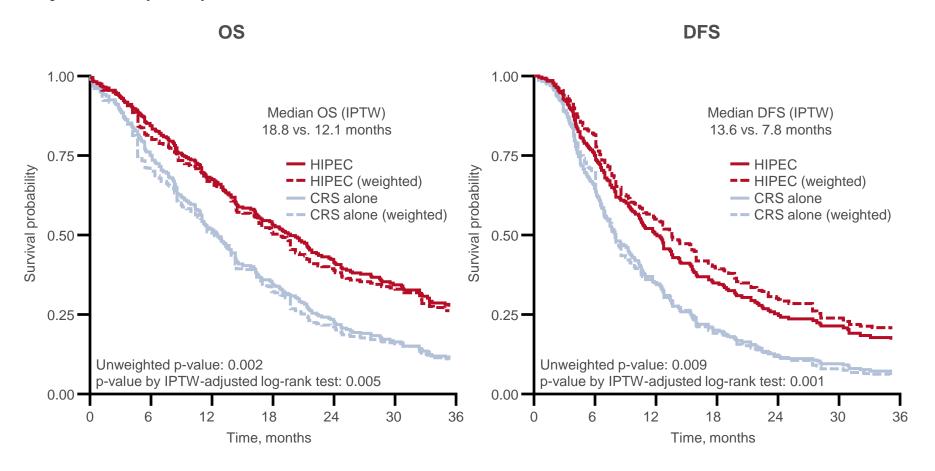
- Peritoneal carcinomatosis histologically proven and/or positive cytology and/or ovarian metastasis from gastric adenocarcinoma
- Patients from 2 databases BIG-RENAPE and FREGAT diagnosed between 1989 and 2014
- Propensity analysis included age, primary tumour, peritoneal disease extension and preoperative treatment

(n=277)

Complete CRS + HIPEC (n=180)

Complete CRS (n=97)

ENDPOINTS


OS, postoperative outcomes

Key results

 There were no significant differences between the two groups with regard to the quality of cytoreduction

Variable	Modality	Overall (n=277)	HIPEC (n=180)	CRS alone (n=97)	p- value	Adjusted p-value on PS
Peritoneal cytology	Positive	100 (54.3)	69 (54.3)	31 (54.4)	0.994	0.807
Peritoneal Cancer	Median (range)	3 (0–25)	6 (0–25)	2 (0–13)	<0.001	0.004
Index*	Mean (SD)	5.42 (5.47)	7.2 (5.87)	2.11 (2.23)		
Completeness of	CC-0	219 (79.1)	138 (76.7)	81 (83.5)	0.182	0.904
cytoreduction score	CC-1	58 (20.9)	42 (23.3)	16 (16.5)		
Ovarian metastases	Yes	60 (22.5)	53 (30.8)	7 (7.4)	<0.001	0.604

^{*0 =} isolated positive peritoneal cytology ± ovarian metastases ± microscopic peritoneal tumour deposit next to the primitive tumour on final pathological exam without macroscopic lesion during surgery; CC-0, no macroscopic residual cancer; CC-1, no residual nodules >2.5 mm at the end of surgery. PS, propensity score

	Before PS analyses		After PS a	nd IPTW analyses
	HIPEC	CRS alone	HIPEC	CRS alone
os				
Median, months	18.6	11.4	18.8	12.1
HR (95%CI)	1.00	1.53 (1.16, 2.03)	1.00	1.66 (1.17, 2.37)
3-year survival rate, %	26.72	13.08	26.21	10.82
5-year survival rate, %	19.92	7.36	19.87	6.43
DFS				
Median, months	11.6	7.60	13.6	7.8
HR (95%CI)	1.00	1.46 (1.1, 1.94)	1.00	1.78 (1.26, 2.52)
3-year survival rate, %	16.52	5.85	20.40	5.87
5-year survival rate, %	13.51	2.92	17.05	3.76

Key results (cont.)

Variable, n (%IPTW)	Overall (n=277)	HIPEC (n=180)	CRS alone (n=97)	Adjusted p-value on PS
Grade 3–4 overall complications	134 (54.3)	87 (53.7)	47 (55.3)	0.496
Surgical complications	92 (37.7)	59 (37.1)	33 (38.8)	0.922
Interventional radiology procedure	39 (15.8)	27 (16.9)	12 (13.8)	0.982
Re-operation	65 (26.1)	42 (25.9)	23 (26.4)	0.424
90 days mortality	21 (8.4)	12 (7.4)	9 (10.1)	0.820
30 days mortality	8 (3.2)	4 (2.5)	4 (4.1)	0.707
Median hospital stay, days (range)	19 (3–157)	20 (5–157)	19 (3–130)	0.911

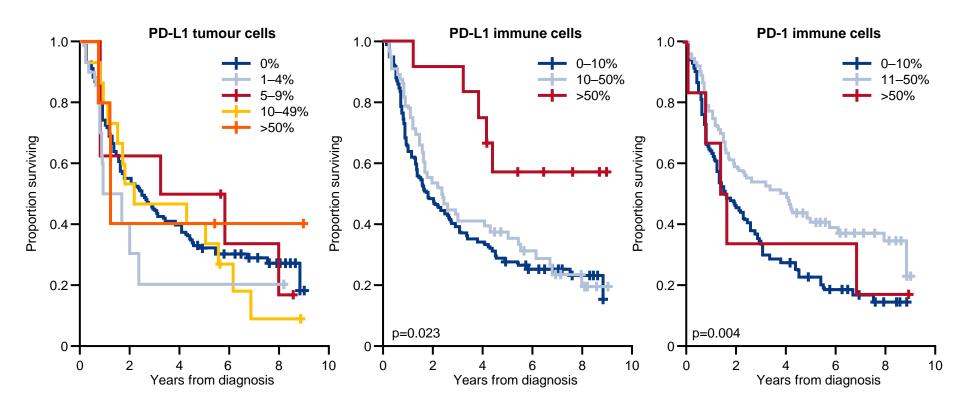
Conclusions

- HIPEC combined with CRS improved OS and DFS in patients with gastric cancer and localised or limited peritoneal metastasis
- HIPEC plus CRS did not increase postoperative mortality or morbidity

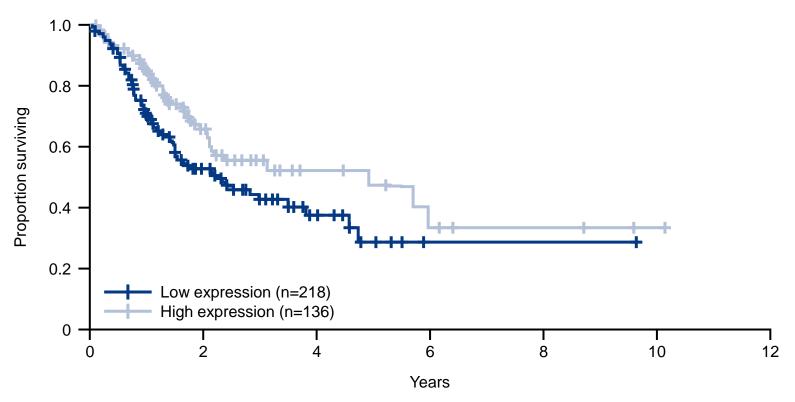
Objective

• To examine the expression of PD-L1 in tumour cells and TIC, and the receptor PD-1 in TIC, in patients with oesophageal and gastric adenocarcinoma

Methods


- Primary tumours from a retrospective consecutive cohort of 174 patients with chemoradiotherapy-naïve resected oesophageal and gastric adenocarcinoma had PD-L1 and PD-1 expression in tumour cells and/or TIC assessed by IHC on tissue microarrays
- IHC analysis was also used to determine MMR status, defined as loss of IHC expression of MLH1, PMS2, MSH2 or MSH6
- In addition, the prognostic value of PD-L1 and PD-1 was examined at the mRNA level in 354 cases of gastric adenocarcinoma in The Cancer Genome Atlas for validation purposes

Key results


- High PD-1 (>10%) and PD-L1 (>50%) expression in TIC was significantly associated with a prolonged OS
- High PD-L1 expression remained an independent prognostic factor after adjustment for relevant clinicopathological factors and MMR status (HR 0.39; 95%CI 0.15, 0.99)
- Neither tumour cell PD-L1 nor MMR status was prognostic
- At the transcript level, PD-L1 expression in gastric adenocarcinoma was not prognostic, whereas high PD-1 expression was significantly associated with a prolonged OS (p=0.012)

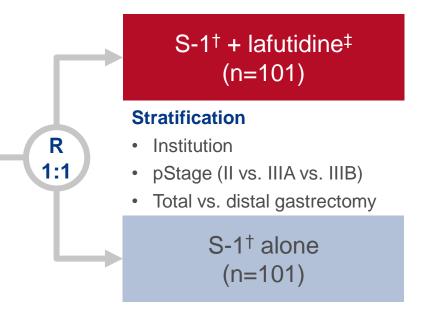
Key results (cont.)

OS in relation to expression of PD-L1 and PD-1

OS in relation to PD-L1 gene expression in gastric adenocarcinoma in The Cancer Genome Atlas

Conclusions

- In patients with oesophageal and gastric adenocarcinoma, there was a significant association between high expression of PD-L1 in tumour cells and TIC and MMR deficiency
- In TIC high expression of PD-1 was associated with prolonged survival
- In TIC, but not tumour cells, high PD-L1 expression was associated with prolonged survival independently of other prognostic factors and MMR status
- In gastric adenocarcinoma, PD-1 expression was significantly associated with a prolonged OS at the transcript level


Study objective

 To evaluate improvements in the completion rate of adjuvant S-1 therapy with the addition of lafutidine to reduce toxicity in Japanese patients with resected gastric cancer

Key patient inclusion criteria

- Histologically proven gastric carcinoma
- R0 resection with D≥2 lymph node dissection
- pStage II/III (Japanese classification)

(n=202)

PRIMARY ENDPOINT

TCR of S-1#

†80–120 mg/day, 4 weeks administration with 2 weeks rest, repeated for 1 year; ‡20 mg/day for 1 year; #completion defined as S-1 continuation for 1 year with >70% planned dose

SECONDARY ENDPOINTS

Safety, relative total administration dose of S-1

Machida N, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 91

Key results

Treatment completion rate

	S-1 + lafutidine (n=101)	S-1 alone (n=101)	p-value
No. completed	69	61	
Completion rate, %	68.3	60.4	0.072

Relative total administration dose

	S-1 + lafutidine (n=101)	S-1 alone (n=101)	p-value
Dose intensity, n (%)			
<70%	32 (31.7)	40 (39.6)	0.152
≥70%	69 (68.3)	61 (60.4)	

Key results (cont.)

Adverse events, n (%)		futidine 102)		S-1 alone (n=100)		
	All grades	Grade ≥3	All grades	Grade ≥3		
All	99 (97.1)	31 (30.4)	97 (97.0)	36 (36.0)		
Neutropenia	2 (2.0)	0 (0)	3 (3.0)	1 (1.0)		
Thrombocytopenia	29 (28.4)	0 (0)	34 (34.0)	3 (3.0)		
Total bilirubin increased	33 (32.4)	2 (2.0)	35 (35.0)	1 (1.0)		
AST increased	24 (23.5)	2 (2.0)	38 (38.0)	0 (0)		
Anorexia	74 (72.5)	15 (14.7)	70 (70.0)	17 (17.0)		
Nausea	56 (54.9)	5 (4.9)	45 (45.0)	5 (5.0)		
Stomatitis	49 (48.0)	3 (3.0)	43 (43.0)	0 (0)		
Diarrhoea	67 (65.7)	2 (2.0)	63 (63.0)	6 (6.0)		
Fatigue	71 (69.6)	11 (10.8)	72 (72.0)	8 (8.0)		
Watering eyes	48 (47.1)	3 (2.9)	45 (45.0)	1 (1.0)		

Machida N, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 91

Conclusions

- In Japanese patients with stage II/III gastric cancer, lafutidine may increase the completion rate of adjuvant S-1
- There was no difference between the groups for relative dose intensity or AEs

Study objective

 To assess the efficacy and safety of the bispecific anti-EpCAM/CD3 mAb catumaxomab then FLOT vs. FLOT alone in patients with peritoneal carcinomatosis from gastric cancer

1:1

Key patient inclusion criteria

- Stage IV gastric cancer and peritoneal carcinomatosis
- Gilly P1–4
- No other metastases

(n=31)

1st laparoscopy 2nd laparoscopy Catumaxomab* IP followed after 7 days by FLOT[†] (n=15)

Stratification

Gilly P1 vs. P2/3 vs. P4

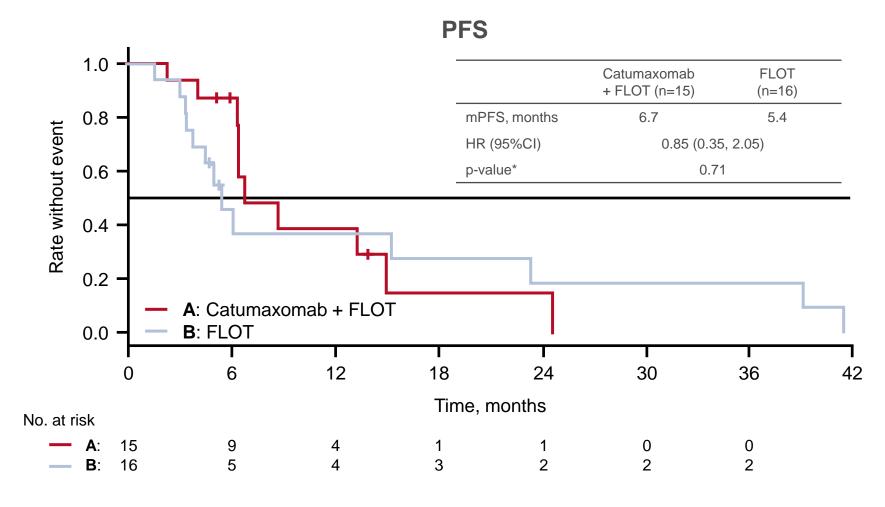
FLOT† alone (n=16)

Gastrectomy or peritonectomy or 12-month follow-up

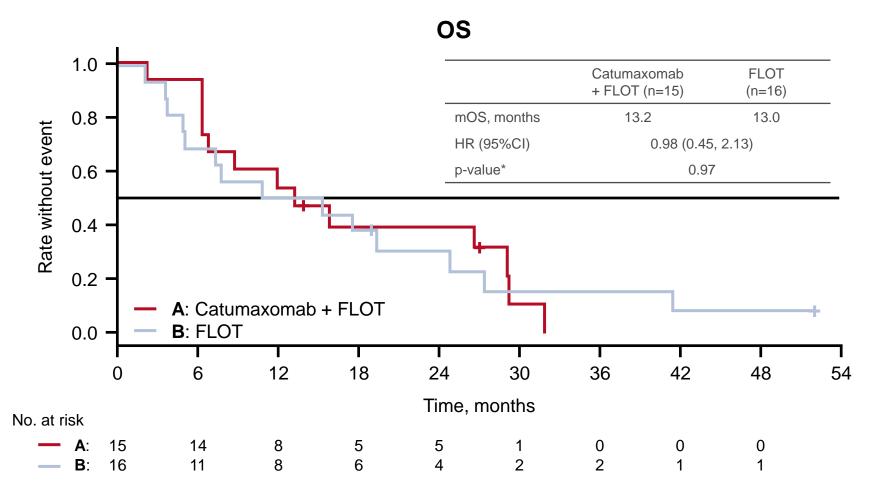
PRIMARY ENDPOINT

Complete remission of peritoneal carcinomatosis at second laparoscopy SECONDARY ENDPOINTS

OS, PFS, safety


*10 μg D0, 20 μg D3, 50 μg D7, 150 μg D10; †Oxaliplatin 85 mg/m² D1, leucovorin 200 mg/m² D1, 5FU 2600 mg/m² (24-h infusion) D1, docetaxel 50 mg/m² D1 (6 cycles)

Lordick F, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 4


Key results

Macroscopic complete remission of peritoneal carcinomatosis	Catumaxomab + FLOT (n=15)	FLOT alone (n=16)
Complete remission, n (%)	4 (27)	3 (19)
p-value		0.69
Non-complete remission, n (%)	9 (60)	9 (56)
No data, n (%)	2 (13)	4 (25)

	Catumaxomab + FLOT (n=15)	FLOT alone (n=16)
Secondary resection rate, n (%)	8 (53)	5 (31)

^{*}Log-rank t-test with FLOT as reference

^{*}Log-rank t-test with FLOT as reference

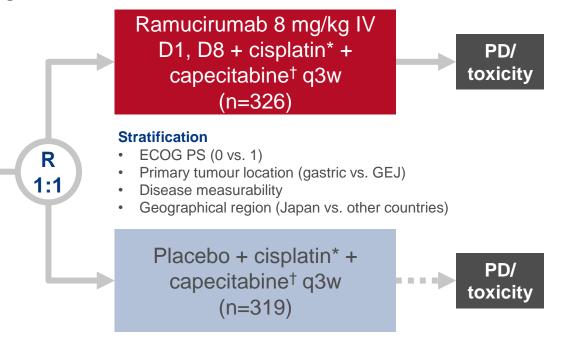
Key results (cont.)

- Grade 3/4 AEs occurring with catumaxomab included nausea (15%), fever (23%), abdominal pain (31%) and elevated liver enzymes gGT (31%), bilirubin (23%)
- 4 (29%) patients experienced SAEs with catumaxomab
- 3 (23%) patients experienced SAEs with FLOT after catumaxomab and 5 (29%) with FLOT alone

Conclusions

- In patients with peritoneal carcinomatosis from gastric cancer there was a trend towards superior complete remission rate with catumaxomab IP followed by FLOT vs. FLOT alone
 - However, the difference between the groups was not significant
- PFS and OS rates were similar between the groups and within the expected range for patients with Stage IV gastric cancer
- Catumaxomab followed by FLOT was tolerable in this patient population and FLOT after catumaxomab was equally tolerated as FLOT alone

5: RAINFALL: A randomized, double-blind, placebo-controlled phase III study of cisplatin (Cis) plus capecitabine (Cape) or 5FU with or without ramucirumab (RAM) as first-line therapy in patients with metastatic gastric or gastroesophageal junction (G-GEJ) adenocarcinoma – Fuchs CS, et al


Study objective

 To investigate the efficacy and safety of ramucirumab + CT vs. placebo + CT as 1L therapy for patients with metastatic gastric/GEJ cancer

Key patient inclusion criteria

- Metastatic gastric/GEJ cancer
- No prior systemic therapy
- HER2 negative
- ECOG PS 0/1

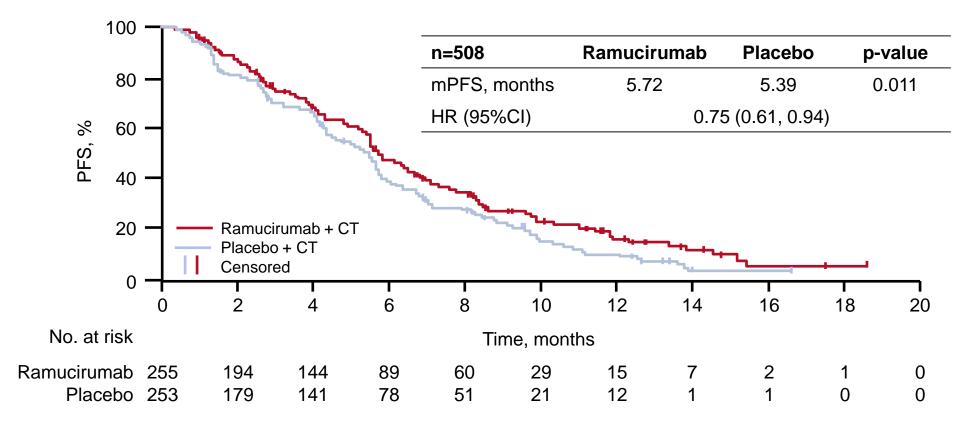
(n=645)

PRIMARY ENDPOINT

PFS (investigator assessed)

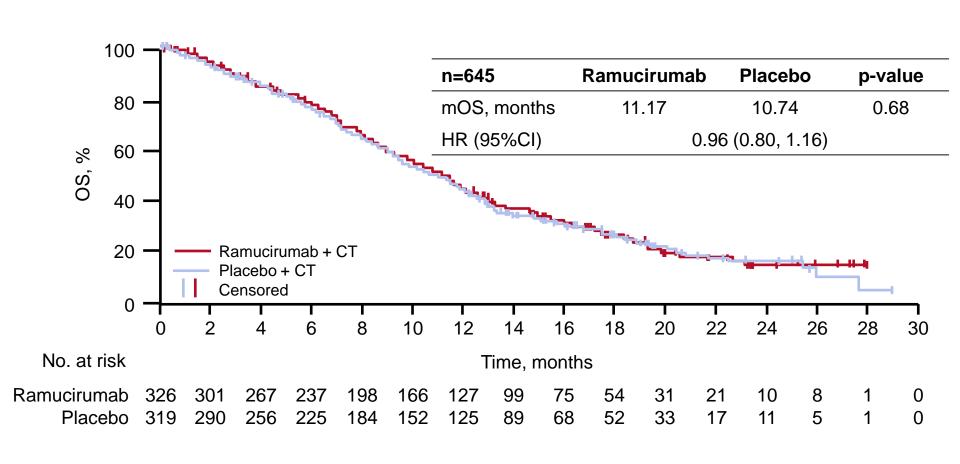
*Cisplatin 80 mg/m² IV D1 (6 cycles); †capecitabine 1000 mg/m² oral bid D1–14 or 5FU 800 mg/m²/day IV D1–5 for patients unable to swallow capecitabine

SECONDARY ENDPOINTS


OS, ORR, DoR, safety, QoL, PK profile

Fuchs CS, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 5

5: RAINFALL: A randomized, double-blind, placebo-controlled phase III study of cisplatin (Cis) plus capecitabine (Cape) or 5FU with or without ramucirumab (RAM) as first-line therapy in patients with metastatic gastric or gastroesophageal junction (G-GEJ) adenocarcinoma – Fuchs CS, et al


Key results

PFS (investigator assessed)

5: RAINFALL: A randomized, double-blind, placebo-controlled phase III study of cisplatin (Cis) plus capecitabine (Cape) or 5FU with or without ramucirumab (RAM) as first-line therapy in patients with metastatic gastric or gastroesophageal junction (G-GEJ) adenocarcinoma – Fuchs CS, et al

OS

5: RAINFALL: A randomized, double-blind, placebo-controlled phase III study of cisplatin (Cis) plus capecitabine (Cape) or 5FU with or without ramucirumab (RAM) as first-line therapy in patients with metastatic gastric or gastroesophageal junction (G-GEJ) adenocarcinoma – Fuchs CS, et al

Grade ≥3 TEAEs occurring in ≥5% of patients, %	Ramucirumab + CT (n=326)	Placebo + CT (n=319)
Neutropenia	26	27
Anaemia	12	14
Hypertension	9.9	1.6
Hand-foot syndrome	8.7	3.8
Fatigue	8.4	7.9
Thrombocytopenia	7.7	3.5
Nausea	6.8	8.3
Vomiting	6.5	9.8
Decreased appetite	6.5	3.2
Abdominal pain	5.6	3.5
Leukopenia	5.0	5.4
Diarrhoea	4.6	7.3
Febrile neutropenia	3.7	5.1

5: RAINFALL: A randomized, double-blind, placebo-controlled phase III study of cisplatin (Cis) plus capecitabine (Cape) or 5FU with or without ramucirumab (RAM) as first-line therapy in patients with metastatic gastric or gastroesophageal junction (G-GEJ) adenocarcinoma – Fuchs CS, et al

Key results (cont.)

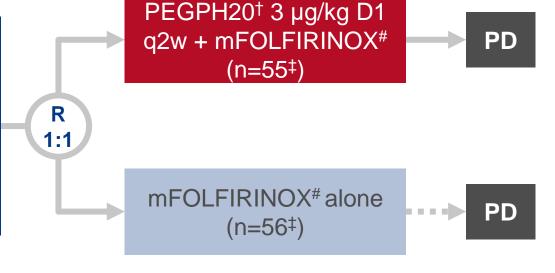
Best overall response, %	Ramucirumab + CT (n=326)	Placebo + CT (n=319)	Stratified p-value
CR	1.2	1.6	
PR	40	35	
SD	41	40	
PD	7.1	12	
ORR (CR + PR)	41	36	0.17
DCR (CR + PR + SD)	82	77	0.10

Conclusions

- In patients with metastatic gastric/GEJ adenocarcinoma, the addition of ramucirumab to 1L CT reduced the risk of disease progression or death by 25%, but with no improvement in OS
- No new safety signals were observed

CANCERS OF THE PANCREAS, SMALL BOWEL AND HEPATOBILIARY TRACT

Cancers of the pancreas, small bowel and hepatobiliary tract


PANCREATIC CANCER

Study objective

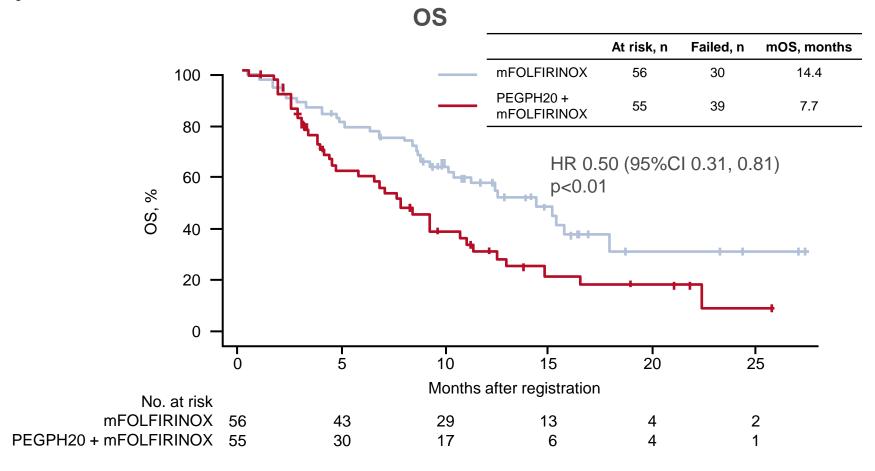
 To assess the efficacy and safety of PEGH20* in combination with mFOLFIRINOX in patients with metastatic pancreatic cancer (planned interim analysis)

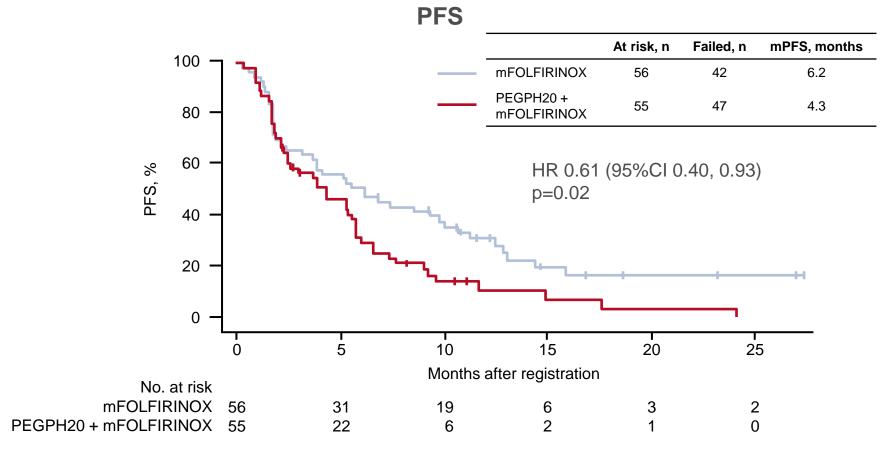
Key patient inclusion criteria

- Untreated metastatic pancreatic cancer
- Adequate organ function
- PS 0–1
 (n=111[‡])

PRIMARY ENDPOINT

OS


*Pegylated recombinant human hyaluronidase that degrades hyaluronan; †a protocol amendment added LMWH prophylaxis to the PEGPH20 arm; ‡planned n=138 per arm (total n=276); #no bolus 5FU


SECONDARY ENDPOINTS

PFS, response rate, treatment exposure, toxicity

Ramanathan R, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 208

Key results

Key results (cont.)

	PEGPH20 + mFOLFIRINOX	mFOLFIRINOX alone
Response rate, % (95%CI)	33 (21, 47)	45 (31, 59)
Treatment exposure, median cycles (range)	4 (0–43)	8 (0–37)
p-value	p=0.05	

Selected AEs (grade 3-4 unless stated otherwise), %	PEGPH20 + mFOLFIRINOX (n=54)	mFOLFIRINOX alone (n=51)
Diarrhoea	24	19
Dehydration	8	13
Fatigue	20	11
Nausea	25	15
Vomiting	22	13
TE events (all grades)	18	4
TE events after LMWH	9	5

One grade 5 AE occurred in the mFOLFIRINOX arm due to sepsis

Conclusions

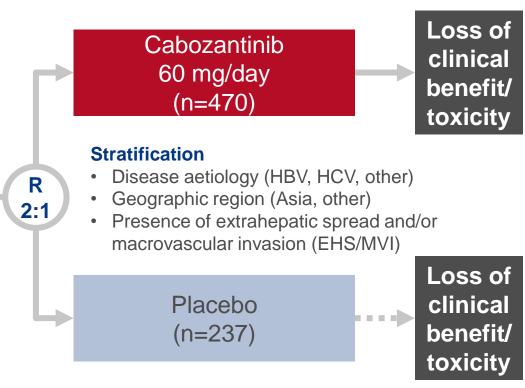
- In patients with metastatic pancreatic cancer, survival with mFOLFIRINOX alone was superior to PEGPH20 + mFOLFIRINOX
 - Adding PEGPH20 to mFOLFIRINOX seems detrimental resulting in increased toxicity
 - There was less mFOLFIRINOX treatment exposure in the PEGPH20 arm
- In contrast, a previous study reported favourable results with PEGPH20 + nabpaclitaxel/gemcitabine¹
- Preclinical studies are planned to analyse the hyaluronan content in tumour cells

Cancers of the pancreas, small bowel and hepatobiliary tract

HEPATOCELLULAR CARCINOMA

Study objective

 To assess the efficacy and safety of cabozantinib vs. placebo in patients with advanced HCC after prior systemic therapy

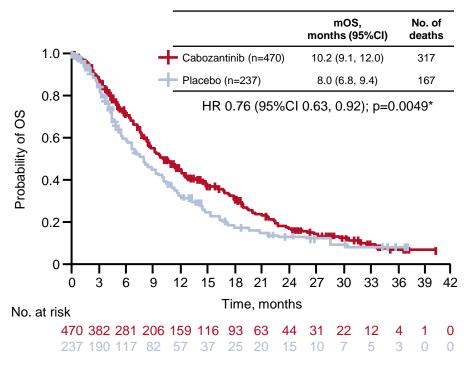

Key patient inclusion criteria

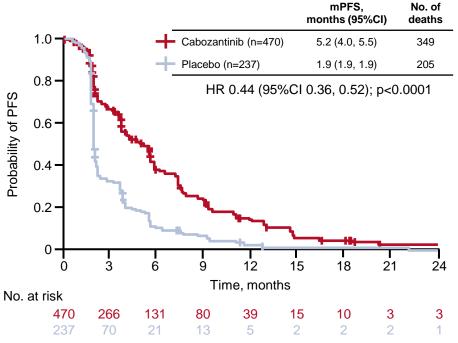
- Advanced HCC
- Child-Pugh score A
- Received prior sorafenib
- Progressed after ≥1 prior systemic treatment for HCC
- Received ≤2 prior systemic regimens for advanced HCC
- ECOG PS 0–1

(n=760)

PRIMARY ENDPOINT

OS


SECONDARY ENDPOINTS


• PFS, ORR

Abou-Alfa G, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 207

Key results

OS and PFS

Key results (cont.)

OS and PFS in subgroups

^{*}Prior systemic anticancer regimens for advanced HCC

	Cabozantinib (n=467)	Placebo (n=237)
Median duration of exposure, months (range)	3.8 (0.1–37.3)	2.0 (0–27.2)
Median average daily dose, mg	35.8	58.9
Any dose reduction, %	62	13
Discontinuation due to TRAEs, %	16	3

Grade 3/4 AEs, %	Cabozantinib (n=467)	Placebo (n=237)
Any	68	36
Palmar-plantar erythrodysesthesia	17	0
Hypertension	16	2
AST increased	12	37
Fatigue	10	4
Diarrhoea	10	2
Asthenia	7	2
Decreased appetite	6	<1
Anaemia	4	5

Conclusions

- In patients with advanced HCC, cabozantinib significantly improved OS, PFS and ORR after prior systemic anticancer therapy
- The safety profile of cabozantinib was acceptable and rate of discontinuation due to TRAEs was low
- Cabozantinib may be a new treatment option for patients with advanced HCC after prior systemic anticancer therapy

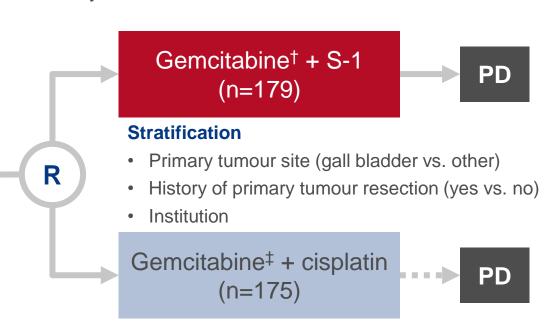
Cancers of the pancreas, small bowel and hepatobiliary tract

BILIARY TRACT CANCER

Study objective

• To evaluate the non-inferiority of gemcitabine + S-1 vs. gemcitabine + cisplatin (SoC) in terms of OS, in patients with advanced biliary tract cancer

Key patient inclusion criteria

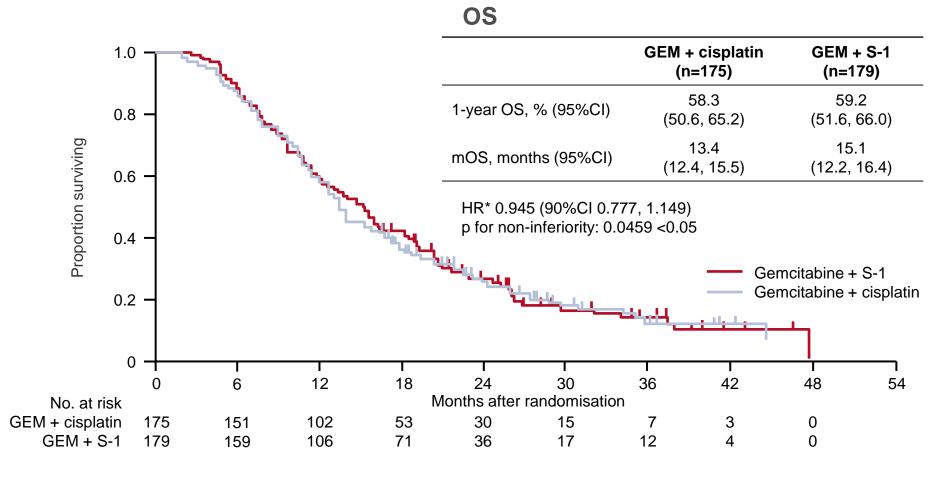

- Unresectable or recurrent biliary tract adenocarcinoma
- Treatment-naïve except surgery and biliary drainage
- No previous CT or RT
- Absence of watery diarrhoea
- ECOG PS 0–1

(n=354)

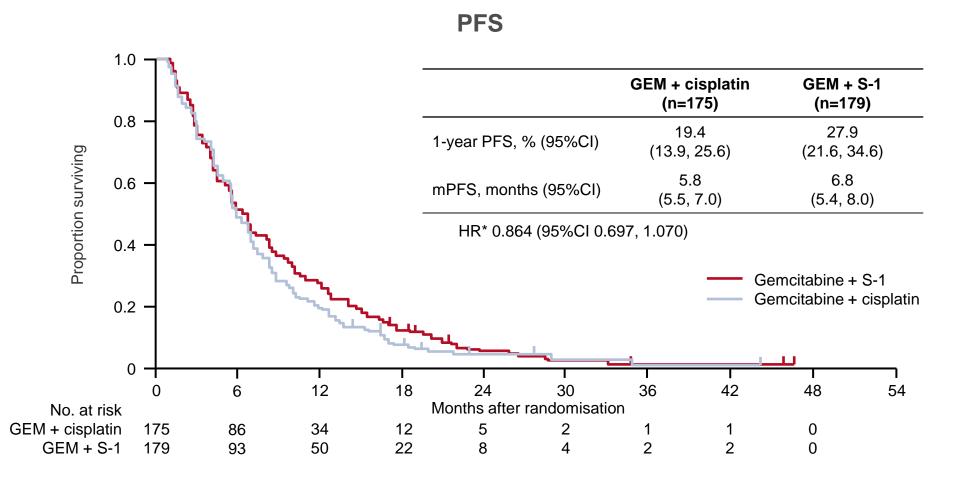
PRIMARY ENDPOINT

OS

[†]Gemcitabine 1000 mg/m² D1, D8 + S-1 60, 80 or 100 mg/body/day D1–14 q3w; [‡]gemcitabine 1000 mg/m² + cisplatin 25 mg/m² D1, D8 q3w



SECONDARY ENDPOINTS


PFS, ORR, safety

Morizane C, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 205

Key results

GEM, gemcitabine. *Cox proportional model stratified by primary tumour site and history of primary tumour resection

^{*}Unstratified Cox proportional model

	Gemcitabine + S-1 (n=141)	Gemcitabine + cisplatin (n=148)	p-value*
ORR, % (95%CI)	29.8 (22.4, 38.1)	32.4 (25.0, 40.6)	0.70
CR, n (%)	2 (1)	0 (0)	-
PR, n (%)	40 (28)	48 (32)	-
SD, n (%)	76 (54)	74 (50)	-
PD, n (%)	19 (13)	21 (14)	-
NE, n (%)	4 (3)	5 (3)	-

Grade 3–4 AEs (>5% patients), %	Gemcitabine + S-1 (n=177)	Gemcitabine + cisplatin (n=171)
WBC decrease	24.9	31.6
Anaemia	6.2	24.0
Platelet count decreased	7.3	16.4
Neutrophil count decreased	59.9	60.8
Rash maculopapular	6.2	0
Biliary tract infection	20.9	19.3
Fatigue	5.6	4.7
Anorexia	5.6	5.8

^{*}Two-sided p-value by Fisher's exact test

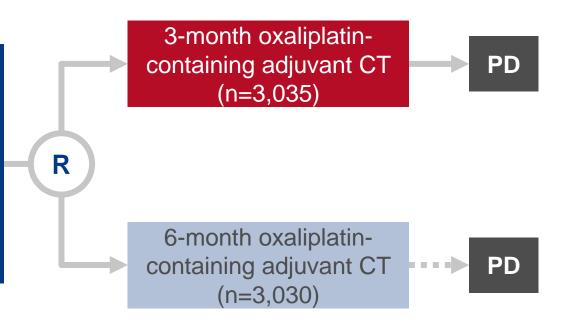
Key results (cont.)

Clinically significant AEs*, n (%)	Gemcitabine + S-1 (n=177)	Gemcitabine + cisplatin (n=171)
Grade ≥2	53 (29.9)	60 (35.1)
Grade ≥3	19 (10.7)	14 (8.2)
Grade ≥4	1 (0.6)	0 (0)

Conclusions

- In patients with advanced biliary tract cancer, gemcitabine + S-1 demonstrated noninferiority in OS to gemcitabine + cisplatin
- Gemcitabine + S-1 had good tolerability and may be considered as a new convenient treatment option of SoC without hydration in this setting

CANCERS OF THE COLON, RECTUM AND ANUS

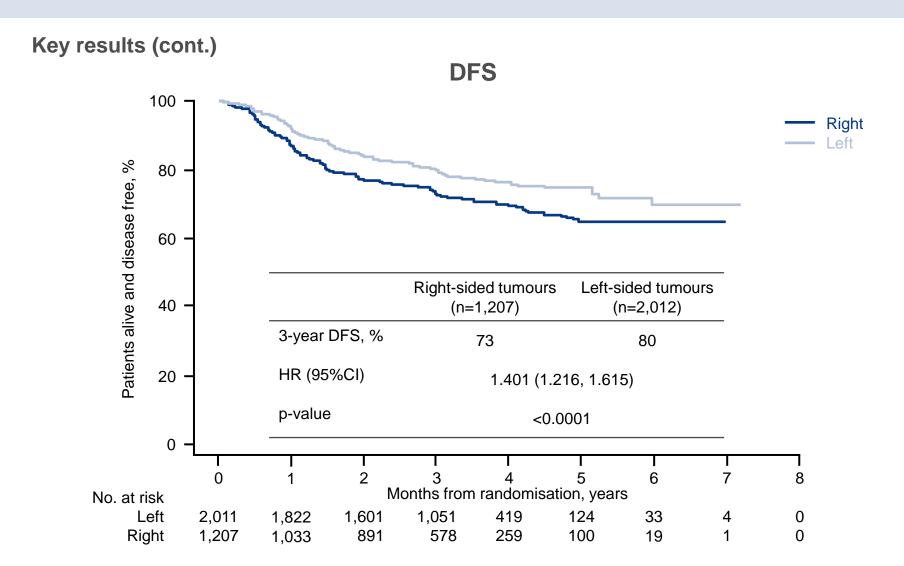

Study objective

 To determine whether tumour sidedness had an impact on DFS in patients with CRC receiving 3- vs. 6-months of oxaliplatin-containing adjuvant CT (SCOT study sub-analysis)

Key patient inclusion criteria

- Stage III/high risk Stage II cancers of the colon or rectum
- Adjuvant CAPOX/FOLFOX (patient/physician choice)

(n=6,088)

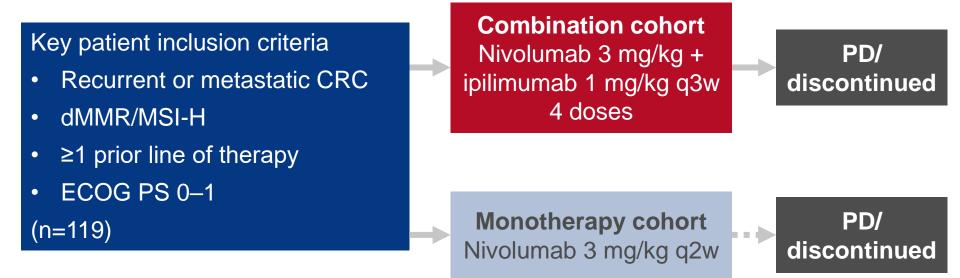

PRIMARY ENDPOINT

- 3- year DFS
- Sidedness information was available for 3,219 patients (right n=1,207, left n=2,012)*

^{*}Tumour locations were collated from pathological reports (information was not recorded at randomisation)

Key results

Patient information at 3-year follow-up	Right-sided tumours (n=1,207)	Left-sided tumours (n=2,012)	p-value*
Median age, years	66	64	<0.001
Male, %	53	66	<0.001
T2, %	41	24	<0.001
Stage II, %	17	21	0.001


	HR (95%CI)	p-value
3-year DFS by tumour sidedness*	1.401 (1.216, 1.615)	<0.0001
3-year DFS by tumour sidedness*, adjusting for T and N-stage	1.215 (1.051, 1.404)	0.009
3-year DFS by CT duration [†] Right-sided tumours Left-sided tumours	1.049 (0.849, 1.296) 0.910 (0.753, 1.099)	0.327

Conclusions

- In patients with CRC receiving 3- vs. 6-months of adjuvant CT, those with rightsided tumours had significantly worse DFS than those with left-sided tumours
 - This is the first study to show that unselected patients with right- vs. left-sided tumours had a worse DFS
- This implies that prognosis is influenced primarily by greater recurrence rather than the contributing factors that influence OS
- Tumour sidedness did not affect the impact of CT duration (3- vs. 6-months) on DFS

Study objective

 To assess the efficacy and safety of nivolumab in combination with ipilimumab in patients with dMMR/MSI-H mCRC in CheckMate-142

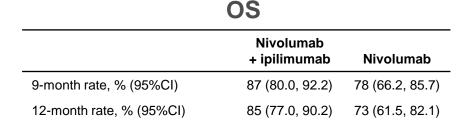
PRIMARY ENDPOINT

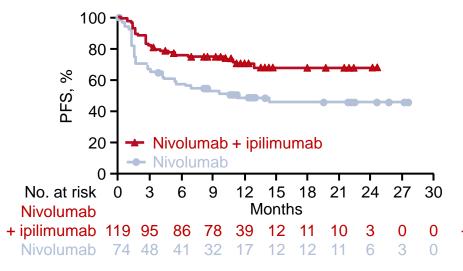
 ORR RECIST v1.1 (investigator assessed)

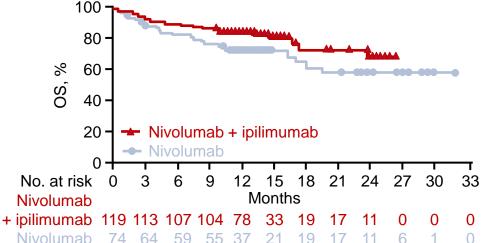
SECONDARY ENDPOINTS

 ORR (BICR), DCR, DoR, PFS, OS, safety

André T, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 553


Key results


	Nivolumab + ipilimumab (n=119)	Nivolumab (n=74)
ORR, % (95%CI)	55 (45.2, 63.8)	31 (20.8, 42.9)
BOR, % CR PR SD PD Unknown	3.4 51.3 31.0 12.0 9.0	0 31.0 38.0 26.0 5.0
DCR, % (95%CI)	80 (71.5, 86.6)	69 (57.1, 79.2)


- Median DoR was not reached in the nivolumab + ipilimumab cohort
- Durable responses were observed with 94% of responders having an ongoing response at data cut-off, and 83% had responses lasting ≥6 months

	•	*
		PFS

	Nivolumab + ipilimumab	Nivolumab
9-month rate, % (95%CI)	76 (67.0, 82.7)	54 (41.5, 64.5)
12-month rate, % (95%CI)	71 (61.4, 78.7)	50 (38.1, 61.4)

	Nivolumab + ipilimumab (n=119)ª	
AEs, n (%)	Any grade	Grade 3-4
Any TRAE	87 (73)	38 (32)
Any serious TRAE	27 (23)	24 (20)
Any TRAE leading to discontinuation	15 (13) ^b	12 (10)
TRAE occurring in >10% of patients Diarrhea Hypothyroidism Nausea Increased ALT Rash Hyperthyroidism	26 (22) 16 (13) 15 (13) 14 (12) 13 (11) 13 (11)	2 (2) 1 (1) 1 (1) 8 (7) 2 (2) 0

^aMedian follow-up 13.4 months (range 9–25); ^bAutoimmune hepatitis and acute kidney injury were the only TRAEs that led to discontinuation in >1 patient (2% each)

Conclusions

- In previously treated patients with dMMR/MSI-H mCRC, nivolumab + ipilimumab provided durable clinical benefit
- Nivolumab + ipilimumab had a manageable safety profile
- Nivolumab + ipilimumab may be a potential new treatment option for patients with previously treated dMMR/MSI-H mCRC

560: A phase Ib study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC) – Bendell JC, et al

Study objective

 To assess the safety and activity of atezolizumab + cobimetinib in patients with locally advanced or metastatic solid tumours, including CRC

Key patient inclusion criteria

- Chemotherapy refractory metastatic or locally advanced CRC
- PD-L1 status not an eligibility criterion
- ECOG PS 0–1 (n=84)

Dose escalation

Atezolizumab
800 mg q2w +
cobimetinib
20–60 mg/day
(21 days on/7 days off)

Dose expansion
Atezolizumab
800 mg q2w +
cobimetinib
60 mg/day
(21 days on/7 days off*)

PD

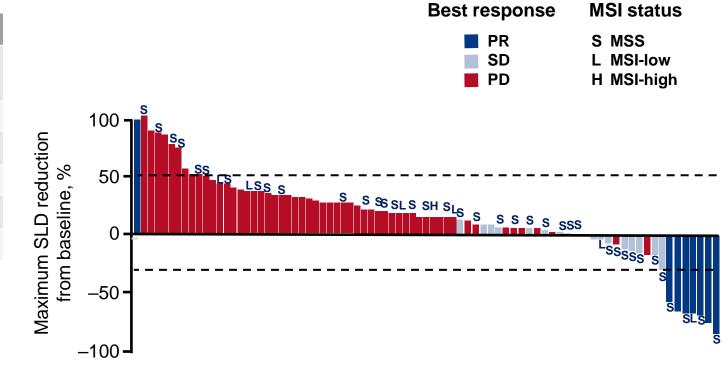
PRIMARY ENDPOINT

Safety

*14 days on/14 days off for patients in mCRC serial biopsy cohort (n=21)

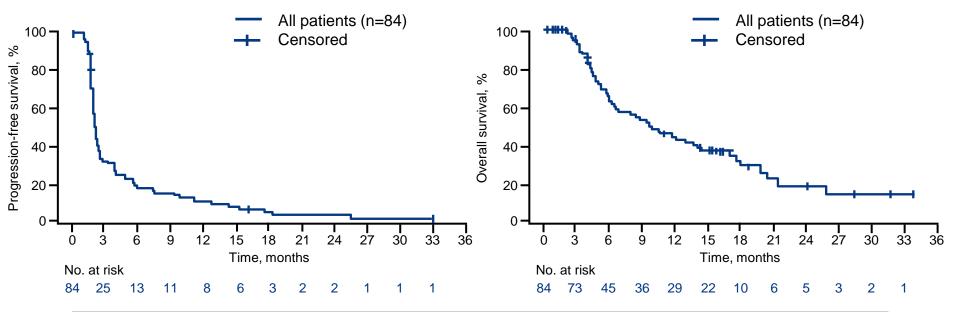
SECONDARY ENDPOINTS

ORR, DoR, PFS, OS


Bendell JC, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 560

560: A phase lb study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC) – Bendell JC, et al

Key results


BOR, n (%)	n=84
ORR, n (%) [95%CI]	7 (8) [3, 16]
CR	0
PR	7 (8)
SD	19 (23)
DCR	36 (31)
PD	51 (61)

Extent and frequency of response to therapy

560: A phase lb study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC) – Bendell JC, et al

Key results (cont.)

		All (n=84)	MSS (n=42)
PFS	Median, months (95%CI)	1.9 (1.8, 2.3)	2.5 (1.8, 3.7)
	6-month rate, %	18	27
os	Median, months (95%CI)	9.8 (6.2, 14.1)	13.0 (6.0, 25.8)
	6-month rate, %	65	71
	12-month rate, %	43	51

Bendell JC, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 560

560: A phase lb study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC) – Bendell JC, et al

Key results (cont.)

AE, n (%)	n=84
All-cause, any grade	82 (98)
Treatment-related All grades Grade 3–4 Grade 5	81 (96) 32 (38) 0
Serious Treatment-related	38 (45) 10 (12)
Leading to withdrawal Leading to withdrawal of atezolizumab Leading withdrawal of cobimetinib	20 (24) 11 (13) 20 (24)

• Grade 3–4 TRAEs included diarrhea (5%), rash (5%), fatigue (5%), blood CPK increased (5%), maculopapular rash (2%), pruritus (1%) and nausea (1%)

560: A phase Ib study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC) – Bendell JC, et al

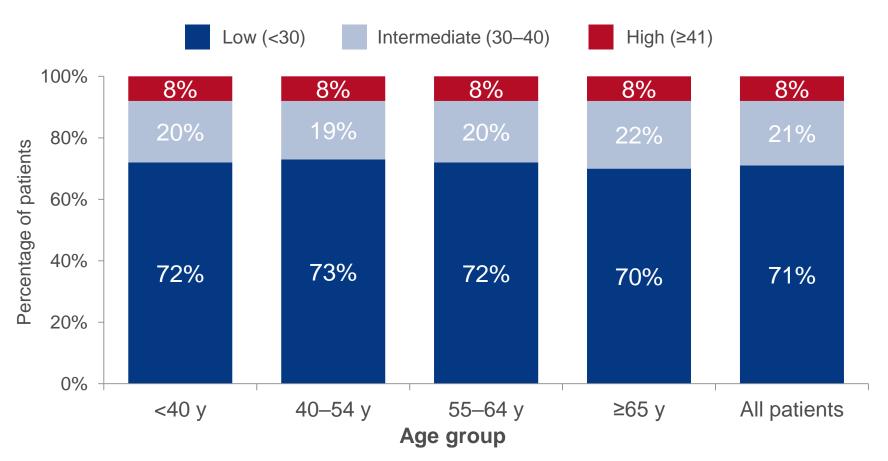
Conclusions

- In heavily pre-treated patients with locally advanced or metastatic CRC atezolizumab combined with cobimetinib was tolerable
 - AEs were similar to those of atezolizumab and cobimetinib individually
- In patients with mCRC, the median OS was 9.8 months with a 12-month OS rate of 43% after a median follow-up of 17.0 months
- Atezolizumab combined with cobimetinib may be the first possible immunemodifying combination for patients with MSS mCRC

552: Age distribution of tumor gene expression in patients with stage II/III colon cancer – Hochster HS, et al

Study objective

• To examine differences in tumour gene expression between older vs. younger patients with Stage II/III colon cancer

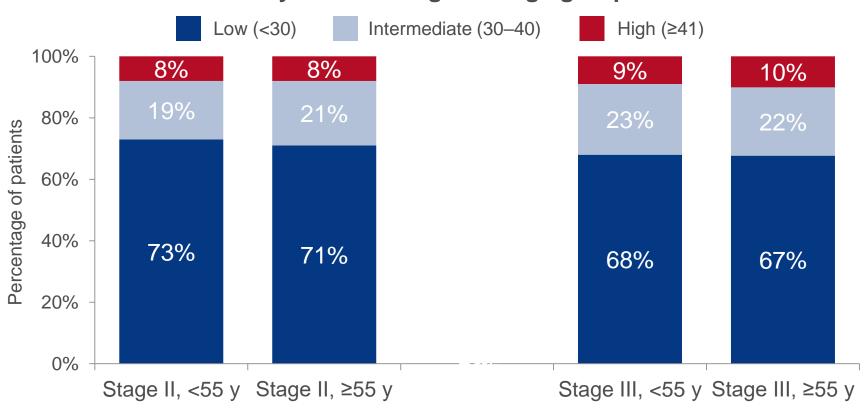

Methods

- The 12-gene Colon Recurrence Score™ test was used to predict the risk of recurrence in patients with Stage II/III colon cancer, using the following age categories:
 - <40 years, 40–54 years, 55–64 years and ≥65 years</p>
 - Or <55 years and ≥55 years
- The Colon Recurrence Score[™] assay measures the RNA expression of 12 genes (7 cancer-related genes and 5 reference genes), using RT-PCR in FFPE tumour tissue samples from 22,052 patients
- The Colon Recurrence Score[™] test result was described according to patient risk group:
 - Low risk: score of <30
 - Intermediate risk: score of 30–40
 - High risk: score of ≥41

552: Age distribution of tumor gene expression in patients with stage II/III colon cancer – Hochster HS, et al

Key results

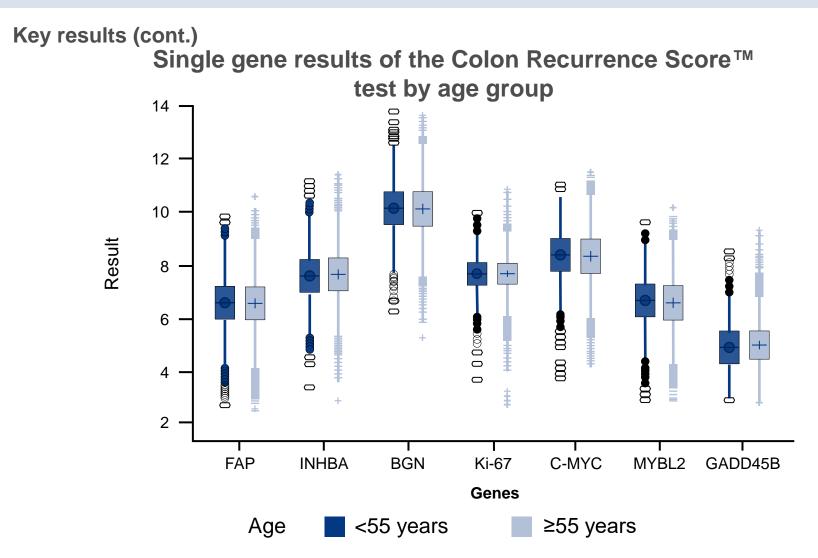
Distribution of Colon Recurrence Score™ groups by age group



Hochster HS, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 552

552: Age distribution of tumor gene expression in patients with stage II/III colon cancer – Hochster HS, et al

Key results (cont.)


Distribution of Colon Recurrence Score™ groups by disease stage and age group

Disease stage and age group

Hochster HS, et al. J Clin Oncol 2018;36(Suppl 4S):Abstr 552

552: Age distribution of tumor gene expression in patients with stage II/III colon cancer – Hochster HS, et al

552: Age distribution of tumor gene expression in patients with stage II/III colon cancer – Hochster HS, et al

Conclusions

- In patients with Stage II/III colon cancer, using the well-validated Colon Recurrence Score™ test in >22,000 patient samples, this study demonstrated similar gene expression across the age groups
- These results suggest that colon cancer in younger vs. older patients is not biologically different
- Most patients with Stage II/III colon cancer had low-risk disease, including younger patients (<55 years)
- The Colon Recurrence Score[™] test is equally valid in identifying younger patients, for whom adjuvant CT may not be necessary