GI SLIDE DECK 2016 Selected abstracts on Non-Colorectal Cancer from:

Supported by Eli Lilly and Company. Eli Lilly and Company has not influenced the content of this publication

Letter from ESDO

DEAR COLLEAGUES

It is my pleasure to present this ESDO slide set which has been designed to highlight and summarise key findings in digestive cancers from the major congresses in 2016. This slide set specifically focuses on the **American Society of Clinical Oncology Annual Meeting 2016** and is available in English and Japanese.

The area of clinical research in oncology is a challenging and ever changing environment. Within this environment, we all value access to scientific data and research that helps to educate and inspire further advancements in our roles as scientists, clinicians and educators. I hope you find this review of the latest developments in digestive cancers of benefit to you in your practice. If you would like to share your thoughts with us we would welcome your comments. Please send any correspondence to info@esdo.eu.

Finally, we are also very grateful to Lilly Oncology for their financial, administrative and logistical support in the realisation of this activity.

Yours sincerely,

Eric Van Cutsem Wolff Schmiegel Philippe Rougier Thomas Seufferlein (ESDO Governing Board)

european society of digestive oncology

ESDO Medical Oncology Slide Deck Editors 2016

COLORECTAL CANCERS

Prof Eric Van Cutsem	Digestive Oncology, University Hospitals, Leuven, Belgium
Prof Wolff Schmiegel	Department of Medicine, Ruhr University, Bochum, Germany
Prof Thomas Gruenberger	Department of Surgery I, Rudolf Foundation Clinic, Vienna, Austria

PANCREATIC CANCER AND HEPATOBILIARY TUMOURS

Prof Jean-Luc Van Laethem Digestive Oncology, Erasme University Hospital, Brussels, Belgium **Prof Thomas Seufferlein** Clinic of Internal Medicine I, University of Ulm, Ulm, Germany

GASTRO-OESOPHAGEAL AND NEUROENDOCRINE TUMOURS

Emeritus Prof Philippe Rougier University Hospital of Nantes, Nantes, France **Prof Côme Lepage** University Hospital & INSERM, Dijon, France

BIOMARKERS

Prof Eric Van Cutsem Digestive Oncology, University Hospitals, Leuven, Belgium **Prof Thomas Seufferlein** Clinic of Internal Medicine I, University of Ulm, Ulm, Germany

Glossary

1L	first line	NET	neuroendocrine tumour
2L	second line	OR	odds ratio
5FU	5-fluorouracil	ORR	overall response rate
AE	adverse event	(m)OS	(median) overall survival
ADC	adenocarcinoma	PD	progressive disease
BSC	best supportive care	PD-L1	programmed death-ligand 1
CI	confidence interval	PEG	poly(ethylene glycol)
CIV	continuous intravenous	PET-CT	positron emission tomography_computed tomography
CR	complete response		(madian) prograssion free survival
(m)CRC	(metastatic) colorectal cancer	(III)FFS	(median) progression-nee survival
СТ	chemotherapy	PK	pharmacokinetics
DCR	disease control rate	PO	oral administration
DFS	disease-free survival	PR	partial response
(m)DOR	(median) duration of response	PS	performance status
ESCC	esophageal squamous cell carcinoma	q(1/2/3/4/5)w	every (1/2/3/4/5) weeks
ECOG	Eastern Cooperative Oncology Group	qd	once daily
EORTC QLQ	European Organisation for Research and Treatment of Cancer quality of life questionnaire	QoL	quality of life
EOX	epirubicin, oxaliplatin, capecitabine	RCT	randomised controlled trial
ESCC	esophageal squamous cell carcinoma	RECIST	Response Evaluation Criteria In Solid Tumors
FDG	2-deoxy-2-[fluorine-18]fluoro- D-alucose	RT	radiotherapy
GC	gastric cancer	S-1	tegafur/CDHP/oteracil
GEJ	gastroesophageal junction	SBRT	stereotactic body radiotherapy
GEP-NET	gastroenteropancreatic neuroendocrine tumour	SD	stable disease
GI	gastrointestinal	SoC	standard of care
HCC	hepatocellular carcinoma	SSA	somatostatin analogue
HER2	human epidermal growth factor receptor 2	SSTR	somatostatin receptor
HR	hazard ratio	TACE	transarterial chemoembolisation
ITT	intent-to-treat	TRAF	treatment-related adverse event
IV	intravenous	TTP	time to progression
LAR	long-acting release	(m)TTP	(median) time to treatment response
Lu	lutetium		(median) time to treatment response
mAb	monoclonal antibody		
MDCT	multiple detector computed tomography	VVBC	
MMR	mismatch repair	WHO	World Health Organization

Contents

•	Oesophageal, adenocarcinoma of the	
	oesophagogastric junction & gastric cancer	<u>6</u>
•	Hepatocellular carcinoma	<u>38</u>
•	Pancreatic cancer	<u>54</u>
•	Neuroendocrine tumour	<u>69</u>

OESOPHAGEAL, ADENOCARCINOMA OF THE OESOPHAGOGASTRIC JUNCTION & GASTRIC CANCER

4000: A multicenter randomized phase III trial of neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy in resectable gastric cancer: First results from the CRITICS study – Verheij M, et al

Study objective

• To investigate the efficacy and safety of CRT vs CT following neo-adjuvant CT and surgery in patients with resectable GC

• Safety, QoL

*3 cycles of ECC (epirubicin, cisplatin/oxaliplatin + capecitabine); †45 Gy in 25 fractions + cisplatin q1w + capecitabine qd.

Note: Based on data from abstract only

Verheij et al. J Clin Oncol 2016; 34 (suppl): abstr 4000

4000: A multicenter randomized phase III trial of neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy in resectable gastric cancer: First results from the CRITICS study – Verheij M, et al

Key results

- Treatment completed: 46% with CT vs 55% with CRT
- After a median follow-up of 50 months, 405 patients had died

	СТ	CRT
5-year OS, %	41.3	40.9
p-value	0.	99
Grade ≥3 AEs	СТ	CRT
Haematological, %	44	34
p-value	0.	01
Gastrointestinal, %	37	42
p-value	0.	14

Conclusion

- Only ~50% of patients completed the treatment
- No significant difference in OS was observed between postoperative CT vs CRT in patients with resectable GC

Note: Based on data from abstract only

Verheij et al. J Clin Oncol 2016; 34 (suppl): abstr 4000

Study objective

 To assess the efficacy and safety of 1L EOX ± IMAB362 (first-in-class anti-CLDN18.2 mAb) in patients with advanced GC

Key patient inclusion criteria

- Advanced GC or GEJ ADC
- No prior CT; ECOG PS ≤1
- CLDN18.2: 2⁺/3⁺ intensity in ≥40% tumour cells

(n=246)

Stratification

- CLDN18.2 positivity
- Measurability of disease

PRIMARY ENDPOINT

• PFS

*Epirubicin 50 mg/m² + oxaliplatin 130 mg/m² d1 + capecitabine 625 mg/m² bid d1–21; [†]Not reported here.

SECONDARY ENDPOINTS

• OS, ORR, Safety

Key results

*2+/3+ CLDN18.2 staining in \geq 40% tumour cells.

Key results (continued)

2+/3+ CLDN18.2 staining in ≥70% tumour cells

Key results (continued)

Response rate (RECIST v1.1), n (%)	EOX (n=84)	EOX + IMAB362 (n=77)
ORR	21 (25.0)	30 (39.0)
CR	3 (3.6)	8 (10.4)
PR	18 (21.4)	22 (28.6)
SD	43 (51.2)	34 (44.2)
PD	10 (11.9)	4 (5.2)
NE/missing	10 (11.9)	9 (11.7)

Selected Grade 3–4 AEs, n (%)	EOX (n=84)	EOX + IMAB362 (n=77)
Anaemia	6 (7.1)	9 (11.7)
Leukopenia	5 (6.0)	6 (7.8)
Neutropenia	18 (21.4)	25 (32.5)
Thrombocytopenia	3 (3.6)	0
Diarrhoea	3 (3.6)	3 (3.9)
Nausea	3 (3.6)	5 (6.5)
Vomiting	3 (3.6)	8 (10.4)
Asthenia	2 (2.4)	2 (2.6)
Fatigue	3 (3.6)	5 (6.5)
Infections	2 (2.4)	0

Key results (continued)

Conclusions

- IMAB362 significantly improved PFS and OS, and the trial met its primary endpoint
- IMAB362 was feasible and well tolerated
- This study provides a strong rationale for a confirmatory Phase III trial

4002: Discontinuation of first-line chemotherapy (CT) after 6 weeks of CT in patients (pts) with metastatic squamous-cell esophageal cancer (MSEC): A randomized phase II trial – Adenis A, et al

Study objective

 To assess the efficacy and safety of CT continuation vs discontinuation following 6 weeks of 1L CT in patients with metastatic ESCC

• Safety, QoL, medical costs

4002: Discontinuation of first-line chemotherapy (CT) after 6 weeks of CT in patients (pts) with metastatic squamous-cell esophageal cancer (MSEC): A randomized phase II trial – Adenis A, et al

Key results

Adenis et al. J Clin Oncol 2016; 34 (suppl): abstr 4002

4002: Discontinuation of first-line chemotherapy (CT) after 6 weeks of CT in patients (pts) with metastatic squamous-cell esophageal cancer (MSEC): A randomized phase II trial – Adenis A, et al

Key results (continued)

AEs, %	Grade 0	Grade 1–2	Grade 3	Grade 4
CT continuation (n=31)	1	17	12	1
CT discontinuation (n=33)	18	12	3	0
Global health status*	CT contir	nuation (n=31)	CT discontir	nuation (n=33)
mTUDD, months (95% CI)	6.7 (3.3, 11.9)	4.4 (2	.9, 6.3)

Conclusions

- In patients with metastatic ESCC, OS was similar in patients who continued vs discontinued CT, although PFS and QoL favoured CT continuation
- CT continuation and discontinuation both appear to be adequate standard treatments in this patient population

4009: Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced gastric or gastroesophageal junction cancer from JAVELIN solid tumor phase Ib trial: Analysis of safety and clinical activity – Chung HC, et al

Study objective

 To investigate the efficacy and safety of avelumab as a 1L maintenance or 2L therapy in patients with advanced GC

ENDPOINTS

- Safety
- PFS, ORR
- PD-L1 expression

4009:Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced gastric or gastroesophageal junction cancer from JAVELIN solid tumor phase Ib trial: Analysis of safety and clinical activity – Chung HC, et al

Key results

Best overall response	Maintenance subgroup (n=89)	2L subgroup (n=62)
ORR, % (95% CI)		
Overall	9.0 (4.0, 16.9)	9.7 (3.6, 19.9)
*PD-L1+	10.0 (1.2, 31.7)	18.2 (2.3, 51.8)
*PD-L1 [_]	3.1 (0.1, 16.2)	9.1 (0.2, 41.3)
Overall DCR, %	57.3	29.0
mPFS, weeks (95% CI)	Maintenance subgroup (n=89)	2L subgroup (n=62)
Overall	12.0 (9.9, 17.6)	6.0 (5.7, 6.4)
*PD-L1+	17.6 (6.0, 24.1)	6.3 (5.4, 18.0)
*PD-L1 ⁻	11.6 (5.7, 14.1)	10.4 (4.1, 21.9)

*Based on ≥1 tumour cell staining.

Chung et al. J Clin Oncol 2016; 34 (suppl): abstr 4009

4009:Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced gastric or gastroesophageal junction cancer from JAVELIN solid tumor phase Ib trial: Analysis of safety and clinical activity – Chung HC, et al

Key results (continued)

TRAEs in ≥5% of patients, n (%)	Maintenance subgroup (n=89) Any grade	2L subgroup (n=62) Any grade	Overall (n=151) Grade ≥3
Any TRAE	54 (60.7)	35 (56.5)	15 (9.9)
Infused related- reaction	14 (15.7)	5 (8.1)	1 (0.7)
Fatigue	9 (10.1)	7 (11.3)	2 (1.3)
Nausea	5 (5.6)	5 (8.1)	0

Conclusions

- Avelumab had an acceptable safety profile
- 1L maintenance or 2L avelumab therapy demonstrated promising clinical activity in patients with advanced GC, particularly in patients with PD-L1⁺ tumours
- These data represent the largest study of anti-PD-L1 agents in patients with GC/GEJ
 - Two Phase III RCTs of avelumab in GC are currently underway

4010: CheckMate-032: Phase I/II, open-label study of safety and activity of nivolumab (nivo) alone or with ipilimumab (ipi) in advanced and metastatic (A/M) gastric cancer (GC) – Janjigian YY, et al

Study objective

• To assess the efficacy and safety of nivolumab ± ipilimumab in patients with advanced GC

Key patient inclusion criteria

- GC, oesophageal/GEJ ADC
- Stage IV; 'RECIST v1.1
 measurable disease
- PD after ≥1 prior CT
- ECOG PS ≤1
- No autoimmune disease or immune therapy (n=160)

PRIMARY ENDPOINT

• ORR (RECIST v1.1)

SECONDARY ENDPOINTS

- OS, PFS, duration of response
- Safety

*Followed by nivolumab 3 mg/kg IV q2w.

4010: CheckMate-032: Phase I/II, open-label study of safety and activity of nivolumab (nivo) alone or with ipilimumab (ipi) in advanced and metastatic (A/M) gastric cancer (GC) – Janjigian YY, et al

Key results

	NIVO 3 mg/kg (n=59)	NIVO 1 mg/kg + IPI 3 mg/kg (n=46)	NIVO 3 mg/kg + IPI 1 mg/kg (n=49)
ORR, n (%)	8 (14)	12 (26)	5 (10)
DCR, n (%)	19 (32)	20 (43)	20 (41)
mTTR, months (range)	1.6 (1.2–4.0)	2.6 (1.2–4.1)	2.6 (1.2–4.1)
mDOR, months (95% CI)	7.1 (3.0, 13.2)	5.6 (2.8, NE)	NE (2.5, NE)

IPI, ipilimumab; NE, not estimable; NIVO, nivolumab.

Janjigian et al. J Clin Oncol 2016; 34 (suppl): abstr 4010

4010: CheckMate-032: Phase I/II, open-label study of safety and activity of nivolumab (nivo) alone or with ipilimumab (ipi) in advanced and metastatic (A/M) gastric cancer (GC) – Janjigian YY, et al

Key results (continued)

ORR by PD-L1 status, % (95% CI)	NIVO 3 mg/kg (n=59)	NIVO 1 mg/kg + IPI 3 mg/kg (n=49)	NIVO 3 mg/kg + IPI 1 mg/kg (n=52)
≥1%	27 (8,5)	44 (14, 79)	27 (6, 61)
<1%	12 (3, 31)	21 (8, 40)	0 (0, 13)
≥5%	33 (4, 78)	0 (0, 98)	25 (1, 81)
<5%	15 (5, 31)	27 (14, 44)	6 (1, 20)
TRAEs, %	NIVO 3 mg/kg (n=59)	NIVO 1 mg/kg + IPI 3 mg/kg (n=49)	NIVO 3 mg/kg + IPI 1 mg/kg (n=52)
Any	70	84	75
Grade 3–4	17	45	27
Serious	43	23	10

Conclusions

- Nivolumab 1 mg/kg + ipilimumab 3 mg/kg resulted in encouraging clinical activity and OS in patients with PD-L1⁺ and PD-L1⁻ CT refractory advanced GC
- TRAEs for nivolumab + ipilimumab were consistent with previous studies
- A Phase III advanced GC trial of nivolumab 1 mg/kg + ipilimumab 3 mg/kg is planned

IPI, ipilimumab; NIVO, nivolumab.

Janjigian et al. J Clin Oncol 2016; 34 (suppl): abstr 4010

4011: A randomized, open-label, two-arm phase II trial comparing the efficacy of sequential ipilimumab (ipi) versus best supportive care (BSC) following first-line (1L) chemotherapy in patients with unresectable, locally advanced/metastatic (A/M) gastric or gastroesophageal junction (G/GEJ) cancer – Moehler MH, et al

Study objective

 To assess the efficacy and safety of ipilimumab (anti-CTLA-4 mAb) vs BSC as sequential/ maintenance therapy in patients with unresectable locally advanced GC following 1L CT

*10 mg/kg q3w for 4 doses, then 10 mg/kg q12w for ≤3 years; †Maintenance CT (5FU/platinum) or no active treatment. 4011: A randomized, open-label, two-arm phase II trial comparing the efficacy of sequential ipilimumab (ipi) versus best supportive care (BSC) following first-line (1L) chemotherapy in patients with unresectable, locally advanced/metastatic (A/M) gastric or gastroesophageal junction (G/GEJ) cancer – Moehler MH, et al

Key results

2.86 (1.41, 4.24)

irTTP, median months (95% CI)

NE, not estimable; ir, immune-related.

Moehler et al. J Clin Oncol 2016; 34 (suppl): abstr 4011

5.19 (4.07, 9.69)

4011: A randomized, open-label, two-arm phase II trial comparing the efficacy of sequential ipilimumab (ipi) versus best supportive care (BSC) following first-line (1L) chemotherapy in patients with unresectable, locally advanced/metastatic (A/M) gastric or gastroesophageal junction (G/GEJ) cancer – Moehler MH, et al

Key results (continued)

TRAEs in ≥12% of patients, %	lpilimumab (n=57)		Active BSC* (n=45)	
	Any grade	Grade 3–4	Any grade	Grade 3–4
Pruritus	31.6	0	2.2	0
Diarrhoea	24.6	8.8	6.7	0
Fatigue	22.8	5.3	6.7	0
Rash	17.5	0	4.4	0
Nausea	12.3	0	17.8	0

Conclusions

- This was the first trial of ipilimumab and the first RCT of an immune checkpoint inhibitor in patients with GC/GEJ
- TRAE frequencies were consistent with ipilimumab trials in other patient populations
- Although this trial did not achieve its primary endpoint, its safety profile suggests ipilimumab warrants further study in patients with GC

*Patients on maintenance CT (5FU/platinum).

4013: Efficacy of combined endoscopic resection and chemoradiotherapy for clinical stage I esophageal squamous cell carcinoma (ESCC): A single-arm confirmatory study (JCOG0508) – Muto M, et al

Study objective

 To evaluate the efficacy and safety of combined endoscopic resection (ER) + CRT in patients with clinical Stage 1 submucosal (cT1b) ESCC

4013: Efficacy of combined endoscopic resection and chemoradiotherapy for clinical stage I esophageal squamous cell carcinoma (ESCC): A single-arm confirmatory study (JCOG0508) – Muto M, et al

Complication of ER (n=176)	Grade ≥3 (%)
Perforation-oesophagus	0
Haemorrhage-oesophagus	0
Stricture/stenosis-oesophagus	0.6

ER, endoscopic resection.

Muto et al. J Clin Oncol 2016; 34 (suppl): abstr 4013

4013: Efficacy of combined endoscopic resection and chemoradiotherapy for clinical stage I esophageal squamous cell carcinoma (ESCC): A single-arm confirmatory study (JCOG0508) – Muto M, et al

Key results (continued)

Toxicities of CRT (n=96)	Grade ≥3 (%)
Neutrophils	22.9
Hyponatraemia	7.3
Anorexia	7.3
Platelets	4.2
Oesophagitis	4.2
Dysphagia	2.1
Cardiac ischaemia/infarction	2.1
Pneumonitis	1
Pericardial effusion	0
Pleural effusion	0

Conclusion

 In patients with cT1b ESCC, combined ER + CRT in addition to local excision gives comparable results to surgery alone in Stage pT1a in terms of efficacy and may be a new minimally invasive treatment option for cT1b ESCC

ER, endoscopic resection.

4014: Phase III study of intraperitoneal paclitaxel plus S-1/paclitaxel compared with S-1/cisplatin in gastric cancer patients with peritoneal metastasis: PHOENIX-GC trial – Ishigami H, et al

Study objective

 To investigate the efficacy and safety of intraperitoneal paclitaxel + S-1/paclitaxel vs S-1/cisplatin in patients with GC and peritoneal metastasis

 No frequent ascites (n=183)

PRIMARY ENDPOINT(S)

• OS

*Paclitaxel 50 mg/m² IV d1+8 + S-1 80 mg/m²/d d1–14, q3w; †Cisplatin 60 mg/m² IV d8 + S-1 80 mg/m²/d d1–21, q5w.

Safety

4014: Phase III study of intraperitoneal paclitaxel plus S-1/paclitaxel compared with S-1/cisplatin in gastric cancer patients with peritoneal metastasis: PHOENIX-GC trial – Ishigami H, et al

Key results

OS

Best response (RECIST v1.1) (in patients with target lesions)	CR	PR	SD	PD	NE	Response rate	Fisher's test
Intraperitoneal paclitaxel + S-1/paclitaxel (n=17)	0	9	4	4	0	53%	n 0.001
S-1/cisplatin (n=5)	0	3	1	0	1	60%	p=0.001

*Stratified log-rank test; †Cox regression analysis.

Ishigami et al. J Clin Oncol 2016; 34 (suppl): abstr 4014

4014: Phase III study of intraperitoneal paclitaxel plus S-1/paclitaxel compared with S-1/cisplatin in gastric cancer patients with peritoneal metastasis: PHOENIX-GC trial – Ishigami H, et al

• AEs: Both regimens were tolerable and there were no treatment-related deaths

Conclusions

- The primary analysis did not show statistical superiority with intraperitoneal paclitaxel + S-1/paclitaxel vs S-1/cisplatin alone in patients with GC and peritoneal metastasis
- However, the sensitivity analysis, which considered the imbalance of ascites, suggested clinical efficacy with intraperitoneal paclitaxel + S-1/paclitaxel

*Cox regression analysis.

4015: Phase III trial of s-1 plus oxaliplatin (SOX) vs s-1 plus cisplatin (SP) combination chemotherapy for first-line treatment of advanced gastric cancer (AGC): SOPP study – Ryu M-H, et al

Study objective

 To assess the efficacy and safety of S-1 + oxaliplatin vs S-1 + cisplatin in patients with previously untreated advanced GC

Key patient inclusion criteria

- Adults with histologically proven metastatic or recurrent GC or GEJ ADC
- ECOG PS ≤2
- ≥1 measurable disease by RECIST v1.1
- No prior CT*
 (n=338)

PRIMARY ENDPOINT(S)

• PFS (RECIST v1.1)

*Apart from 5FU/cisplatin \geq 6 months of study; †80 mg/m²/d d1–14 PO; ‡130 mg/m² d1 IV; ¥60 mg/m² d1 IV.

Ryu et al. J Clin Oncol 2016; 34 (suppl): abstr 4015

4015: Phase III trial of s-1 plus oxaliplatin (SOX) vs s-1 plus cisplatin (SP) combination chemotherapy for first-line treatment of advanced gastric cancer (AGC): SOPP study – Ryu M-H, et al

Key results

AEs, n (%)	S-1 + Oxaliplatin	S-1 + Cisplatin
WBC decreased	4 (2.3)	17 (10.42)
Neutropenia	28 (16.2)	65 (35.6)
Thrombocytopenia	13 (7.5)	8 (4.9)
Anaemia	9 (5.2)	18 (11)
Febrile neutropenia	7 (8)	7 (9)
Anorexia	15 (8.7)	11 (6.7)
Nausea	6 (3.5)	4 (2.4)
Vomiting	2 (1.2)	3 (1.8)
Diarrhoea	7 (4.0)	6 (3.7)
Fatigue	11 (6.4)	14 (8.5)
Peripheral neuropathy	15 (8.7)	6 (3.7)
Abdominal pain	4 (2.3)	3 (1.8)
Thromboembolic event	3 (1.8)	4 (2.3)
Creatinine increased	0 (0)	0 (0)

Ryu et al. J Clin Oncol 2016; 34 (suppl): abstr 4015

*Log-rank test.

4015: Phase III trial of s-1 plus oxaliplatin (SOX) vs s-1 plus cisplatin (SP) combination chemotherapy for first-line treatment of advanced gastric cancer (AGC): SOPP study – Ryu M-H, et al

Key results (continued)

Conclusions

- S-1 + oxaliplatin was non-inferior to S-1 + cisplatin in terms of PFS, ORR and OS in patients with previously untreated advanced GC
- The two regimens were well tolerated with different toxicity profiles
- S-1 + oxaliplatin can be recommended as 1L treatment of advanced GC

4016: Efficacy and safety findings from DREAM: A phase III study of DHP107 (oral paclitaxel) vs IV paclitaxel in patients with gastric cancer after failure of first-line chemotherapy – Kang Y-K, et al

Study objective

 To evaluate the efficacy and safety of oral paclitaxel (DHP107) vs paclitaxel IV in patients with advanced GC following failure of first-line CT

Key patient inclusion criteria

- Histologically or cytologically confirmed, unresectable recurrent/advanced GC
- Failure of 1L CT*
- ECOG PS ≤2
- Measurable lesion according to RECIST v1.1 (n=236)

PRIMARY ENDPOINT(S)

• Non-inferiority PFS

SECONDARY ENDPOINTS

- OS; ORR
- Safety

*Fluoropyrimidine ± platinum for metastatic or recurrent disease.

4016: Efficacy and safety findings from DREAM: A phase III study of DHP107 (oral paclitaxel) vs IV paclitaxel in patients with gastric cancer after failure of first-line chemotherapy – Kang Y-K, et al

*Reference: paclitaxel IV.

Kang et al. J Clin Oncol 2016; 34 (suppl): abstr 4016
4016: Efficacy and safety findings from DREAM: A phase III study of DHP107 (oral paclitaxel) vs IV paclitaxel in patients with gastric cancer after failure of first-line chemotherapy – Kang Y-K, et al

	DHP107 PO (n=118	3)	Paclitaxel IV ((n=118) p	o-value	
ORR, %	17.8		25.4		0.155	
CR	4.2		3.4		-	
PR	13.6		22.0		-	
Grade ≥3 AEs in ≥8%	of patients, n %	DHF	P107 PO (n=118)	Paclitaxel IV (n=118)) p-val	ue
Neutropenia			50 (42.4)	63 (53.4)	0.18	85
Febrile			7 (5.9)	3 (2.5)	0.33	33
Leukopenia			22 (18.6)	20 (16.9)	0.10)3
Anaemia			17 (14.4)	18 (15.3)	0.26	68
Peripheral sensory neu	uropathy		3 (2.5)	10 (8.5)	<0.0	01

Key results (continued)

Conclusions

- PFS was non-inferior with oral DHP107 vs paclitaxel IV in patients with advanced GC
- OS, response rates and DCR* were comparable between treatment groups
- Both treatments were well tolerated
- DHP107 is the first oral paclitaxel with proven efficacy and safety in advanced GC

*Data not presented at ASCO.

Kang et al. J Clin Oncol 2016; 34 (suppl): abstr 4016

HEPATOCELLULAR CARCINOMA

4003: Phase III randomized study of sorafenib plus doxorubicin versus sorafenib in patients with advanced hepatocellular carcinoma (HCC): CALGB 80802 (Alliance) – Abou-Alfa GK, et al

Study objective

OS

• To investigate whether sorafenib + doxorubicin improved survival compared with sorafenib alone in patients with advanced HCC

- PFS, TTP, tumour response (RECIST v1.1)
 - Safety

4003: Phase III randomized study of sorafenib plus doxorubicin versus sorafenib in patients with advanced hepatocellular carcinoma (HCC): CALGB 80802 (Alliance) – Abou-Alfa GK, et al

	Doxorubicin + Sorafenib (n=180)	Sorafenib (n=176)	HR (95% CI); p-value
mOS, months	8.9	10.5	1.1 (0.8. 1.4); 0.24
mPFS, months	4.0	3.9	0.9 (0.7, 1.2); 0.98

Abou-Alfa et al. J Clin Oncol 2016; 34 (suppl): abstr 4003

4003: Phase III randomized study of sorafenib plus doxorubicin versus sorafenib in patients with advanced hepatocellular carcinoma (HCC): CALGB 80802 (Alliance) – Abou-Alfa GK, et al

Key results (results)

Grade 3–4 AEs in ≥10% of patients, %	Doxorubicin + Sorafenib (n=180)	Sorafenib (n=176)
Fatigue	10	7
Hypertension	3	13
WBC	11	0
Neutrophils	33	0
Platelets	14	1
Hand foot syndrome	10	14

Conclusions

- In patients with advanced HCC, 1L doxorubicin + sorafenib did not improve survival vs sorafenib alone
- Additional toxicity was observed in the doxorubicin + sorafenib arm
- The results of planned correlative studies are currently awaited

4017: Phase III randomized study of second line ADI-peg 20 (A) plus best supportive care versus placebo (P) plus best supportive care in patients (pts) with advanced hepatocellular carcinoma (HCC) – Abou-Alfa G, et al

Study objective

 To investigate the efficacy and safety of the arginine deiminase ADI-PEG 20 + BSC vs placebo + BSC in patients with refractory advanced HCC

Key inclusion criteria

- Histologically proven advanced HCC
- Child-Pugh ≤B7
- ECOG PS ≤2
- Failed/intolerant to prior systemic therapy (n=635)

PRIMARY ENDPOINT(S)

• OS

4017: Phase III randomized study of second line ADI-peg 20 (A) plus best supportive care versus placebo (P) plus best supportive care in patients (pts) with advanced hepatocellular carcinoma (HCC) – Abou-Alfa G, et al

Abou-Alfa et al. J Clin Oncol 2016; 34 (suppl): abstr 4017

4017: Phase III randomized study of second line ADI-peg 20 (A) plus best supportive care versus placebo (P) plus best supportive care in patients (pts) with advanced hepatocellular carcinoma (HCC) – Abou-Alfa G, et al

Key results (continued)

mOS, months (95% CI)	>7 weeks	≤7 weeks	p-value
Arginine depletion	12.5 (10, 16.3)	6.3 (5.3, 7.4)	<0.0001
Citrulline increase	13 (10.9, 16.1)	5.6 (4.7, 7.1)	<0.0001
AEs, n (%)	ADI-PEG 20 + BSC	(n=424) Placebo + I	BSC (n=211)
Grade 3–4 AEs in ≥5% of	patients		
Haematology: Anaemia	19 (4)	12	(6)
Liver: AST	42 (10)	18	(9)
Skin: Pruritus and rash			
Grade 1–2	142 (34)	52	(25)
Grade 3	5 (1)	2	(1)
Deaths on study	68 (16)	36	(17)

Conclusions

- ADI-PEG monotherapy did not improve survival vs placebo in patients with advanced HCC who had failed or were intolerant to prior systemic therapy
- ADI-PEG was well tolerated

4012: Phase I/II safety and antitumor activity of nivolumab (nivo) in patients (pts) with advanced hepatocellular carcinoma (HCC): Interim analysis of the CheckMate-040 dose escalation study - El-Khoueiry AB, et al

Study objective

To investigate the efficacy and safety of escalating doses of nivolumab in patients with advanced HCC

Key patient inclusion criteria

- Histologically confirmed advanced HCC
- Child-Pugh score ≤ 7
- Previously failed, refused or • were intolerant of sorafenib

(n=48)

PRIMARY ENDPOINT(S)

Safety

SECONDARY ENDPOINTS

Dose escalation phase* (n=48)

- Antitumor activity by RECIST 1.1
- DOR

*Reported in the current analysis.

4012: Phase I/II safety and antitumor activity of nivolumab (nivo) in patients (pts) with advanced hepatocellular carcinoma (HCC): Interim analysis of the CheckMate-040 dose escalation study – EI-Khoueiry AB, et al

• mOS: 15.1 months (95% CI 9.6, 28.6)

NIVO, nivolumab.

El-Khoueiry et al. J Clin Oncol 2016; 34 (suppl): abstr 4012

4012: Phase I/II safety and antitumor activity of nivolumab (nivo) in patients (pts) with advanced hepatocellular carcinoma (HCC): Interim analysis of the CheckMate-040 dose escalation study – EI-Khoueiry AB, et al

Key results (continued)

TRAFe in >10% of notionte	All patients (n=48)		
TRAES IN 210% OF patients	Any grade	Grade 3–4	
Rash	11 (23)	0	
Pruritus	7 (15)	0	
AST increased	10 (21)	5 (10)	
Lipase increased	10 (21)	6 (13)	
Amylase increased	9 (19)	1 (2)	
ALT increased	7 (15)	3 (6)	

Conclusions

- mOS with nivolumab was highly encouraging in patients with HCC
- Nivolumab had a manageable safety profile, including in patients with HBC or HCV
 - Apart from a higher frequency of AST/ALT, the safety profile was similar to that observed in other tumours
- The dose-escalation phase of this study supports the continued exploration of nivolumab 3 mg/kg in patients with HCC during an expansion phase

4018: TACE 2: A randomized placebo-controlled, double-blinded, phase III trial evaluating sorafenib in combination with transarterial chemoembolisation (TACE) in patients with unresectable hepatocellular carcinoma (HCC) – Meyer T, et al

Study objective

 To assess the efficacy and safety of TACE + sorafenib vs TACE + placebo in patients with unresectable HCC

PRIMARY ENDPOINT(S)

• PFS

*Performed at 2–5 weeks using drug eluting beads loaded with 150 mg doxorubicin, then performed according to radiological response and patient tolerance.

OS, TCC, disease control

SECONDARY ENDPOINTS

Safety, QoL

Meyer et al. J Clin Oncol 2016; 34 (suppl): abstr 4018

4018: TACE 2: A randomized placebo-controlled, double-blinded, phase III trial evaluating sorafenib in combination with transarterial chemoembolisation (TACE) in patients with unresectable hepatocellular carcinoma (HCC) – Meyer T, et al

Meyer et al. J Clin Oncol 2016; 34 (suppl): abstr 4018

4018: TACE 2: A randomized placebo-controlled, double-blinded, phase III trial evaluating sorafenib in combination with transarterial chemoembolisation (TACE) in patients with unresectable hepatocellular carcinoma (HCC) – Meyer T, et al

	TACE + Sorafenib (n=77)	TACE + Placebo (n=78)	Overall (n=155)
Unrelated SAE, n (%)	50 (64.9)	66 (84.6)	116 (74.8)
SAR, n (%)	22 (28.6)	10 (12.8)	32 (20.6)
SUSAR, n (%)	5 (6.5)	2 (2.6)	7 (4.5)
Total, n (%)	77 (100.0)	78 (100.0)	155 (100.0)

Key results (continued)

Conclusions

- There was no evidence that the addition of sorafenib to drug-eluting bead TACE improves PFS and OS in patients with intermediate HCC
- Alternative systemic therapies need to be evaluated in combination with TACE to improve outcomes for this patient population

4087: Stereotactic body radiotherapy (SBRT) as an alternative to transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC) – Sapir E, et al

Study objective

• To investigate the efficacy and safety of SBRT vs TACE in patients with HCC

ENDPOINTS

- Local control*
- OS
- Safety

*No tumour growth within or immediately adjacent to the TACE cavity or original tumour.

Based on data from abstract only

Sapir et al. J Clin Oncol 2016; 34 (suppl): abstr 4087

4087: Stereotactic body radiotherapy (SBRT) as an alternative to transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC) – Sapir E, et al

Key results

	SBRT (n=125)	TACE (n=84)	HR (95% CI); p-value
Local control, %			
Year 1	97	41	18.8 (6.7, 52.7); <0.001
Year 2	91	18	
Predictors of worse local control*			
Increasing tumour size	-	-	1.2† (1.05, 1.23); <0.001
Partial portal venous tumour thrombus	-	-	7.0 (2.73, 15.2); <0.001

	SBRT (n=125)	TACE (n=84)	p-value
Grade ≥3 AEs, %	14	7	0.05

*Predicted worse local control with TACE but not with SBRT; *Per cm.

Based on data from abstract only

Sapir et al. J Clin Oncol 2016; 34 (suppl): abstr 4087

4087: Stereotactic body radiotherapy (SBRT) as an alternative to transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC) – Sapir E, et al

Key results (continued)

- SBRT was initiated a mean of 9 months later than TACE; p<0.001
- Liver transplantation: 8% with SBRT vs 18% with TACE; p=0.01
- OS: HR* 0.73 (95% CI 0.48, 1.12); p=0.15

Conclusions

- In patients with HCC, SBRT is an acceptable alternative to TACE for 1–2 tumours
 - SBRT provides superior local control, with no difference in OS
- Prospective comparative trials of TACE, SBRT and other ablative therapies are warranted

Adjusted for baseline liver function and transplantation.

Based on data from abstract only

Sapir et al. J Clin Oncol 2016; 34 (suppl): abstr 4087

PANCREATIC CANCER

Study objective

 To investigate the efficacy and safety of gemcitabine + capecitabine vs gemcitabine alone as adjuvant therapy in patients with resected pancreatic cancer

*1000 mg/m² d1,8,16 (6 cycles); [†]1660 mg/m² 21/28d.

Neoptolemos et al. J Clin Oncol 2016; 34 (suppl): abstr LBA4006

*Stratified by resection margin status and country. CAP, capecitabine; GEM, gemcitabine.

Neoptolemos et al. J Clin Oncol 2016; 34 (suppl): abstr LBA4006

LN, lymph nodes; N/A, not available; RM, resection margin. Neoptolemos et al. J Clin Oncol 2016; 34 (suppl): abstr LBA4006

Key results (continued)

CAP, capecitabine; GEM, gemcitabine; RM, resection margin.

Neoptolemos et al. J Clin Oncol 2016; 34 (suppl): abstr LBA4006

Key results (continued)

AEs Grade 3–4 in ≥5% of patients, n (%)	Gemcitabine + Capecitabine (n=359)	Gemcitabine (n=366)	p-value*
Diarrhoea	19 (5)	6 (2)	0.008
Fatigue	20 (6)	19 (5)	0.870
Infection/infestation	9 (3)	24 (7)	0.012
Neutrophils	137 (38)	89 (24)	<0.001
Hand-foot syndrome	26 (7)	0	<0.001
WBC	37 (10)	28 (8)	0.242

• Treatment related SAEs: 24% gemcitabine + capecitabine vs 26% gemcitabine alone

Conclusions

- Adjuvant gemcitabine + capecitabine demonstrated significant improvements in OS
 vs gemcitabine alone in patients with resected pancreatic cancer
- Toxicities were slightly more frequent with gemcitabine + capecitabine vs gemcitabine monotherapy, but overall these were manageable
- The 5-year OS survival rate was superior to previous ESPAC trials
- Adjuvant gemcitabine + capecitabine is the new SoC in this setting

*Exploratory analysis: Fisher's exact test.

Neoptolemos et al. J Clin Oncol 2016; 34 (suppl): abstr LBA4006

4007: MAESTRO: A randomized, double-blind phase III study of evofosfamide in combination with gemcitabine in previously untreated patients with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma – Van Cutsem E, et al

Study objective

 To evaluate the efficacy and safety of 1L evofosfamide + gemcitabine in patients with advanced pancreatic cancer

Key inclusion criteria

- Unresectable, locally advanced or metastatic pancreatic ductal ADC
- ECOG PS ≤1
- No prior CT or systemic therapy*
- No neoadjuvant or adjuvant CT <6 months prior

(n=693)

PRIMARY ENDPOINT

• Overall survival (OS)

*Apart from radiosensitising doses of 5FU or gemcitabine (if relapse was ≥6 months after completion of gemcitabine); †1000 mg/m² d1,8,15 q28d.

4007: MAESTRO: A randomized, double-blind phase III study of evofosfamide in combination with gemcitabine in previously untreated patients with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma – Van Cutsem E, et al

Key results

	Placebo + GEM vs EVO + GEM	p-value*
PFS, HR (95% CI)	0.75 (0.63, 0.90)	0.002
Best response, OR (95% CI)	1.26 (0.83, 1.90)	0.227
Confirmed response, OR (95% CI)	1.79 (1.09, 2.96)	0.009

*Log-rank (stratified). EVO, evofosfamide; GEM, gemcitabine.

Van Cutsem et al. J Clin Oncol 2016; 34 (suppl): abstr 4007

4007: MAESTRO: A randomized, double-blind phase III study of evofosfamide in combination with gemcitabine in previously untreated patients with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma – Van Cutsem E, et al

Key results (continued)

Grade 3–4 haematological AEs, n (%)	Evofosfamide + Gemcitabine (n=338)	Placebo + Gemcitabine (n=341)
Neutropenia	152 (45.0)	88 (25.8)
Febrile neutropenia	7 (2.1)	2 (0.6)
Thrombocytopenia	160 (47.3)	26 (7.6)
Anaemia	75 (22.2)	41 (12.0)

Conclusions

- The trial did not meet its primary endpoint
- Evofosfamide + gemcitabine showed signs of antitumor activity (OS, PFS, ORR) vs placebo + gemcitabine in patients with advanced pancreatic cancer
- Haematological AEs were slightly more common with evofosfamide + gemcitabine
 - No new safety signals were identified
- Further analyses are ongoing

4008: PET-PANC: Multi-centre prospective diagnostic accuracy and clinical value trial of FDG PET/CT in the diagnosis and management of suspected pancreatic cancer – Ghaneh P, et al

Study objective

• To investigate the impact of FDG PET-CT in addition to standard diagnostic workup in patients with suspected pancreatic cancer

PRIMARY ENDPOINT

 Incremental diagnostic value of FDG PET-CT in addition to MDCT

SECONDARY ENDPOINTS

- Changes in diagnosis, staging and patient management
- Costing

*Unblinded based on first MDT outcome; [†]Unblinded to PET/CT scan based on second MDT outcome, followed by actual diagnosis and management; [‡]Reference standard: diagnosis made by an independent panel blinded to previous diagnoses/scans.

Ghaneh et al. J Clin Oncol 2016; 34 (suppl): abstr 4008

4008: PET-PANC: Multi-centre prospective diagnostic accuracy and clinical value trial of FDG PET/CT in the diagnosis and management of suspected pancreatic cancer – Ghaneh P, et al

Key results

Diagnostic accuracy	MDCT , % (95% CI)	PET-CT, % (95% CI)	Relative	p-value
Sensitivity	88.5 (84.6, 92.4)	92.7 (89.6 , 95.9)	1.05 (1.01, 1.09)	0.010
Specificity	70.6 (65.3 , 75.8)	75.8 (70.8, 80.7)	1.07 (1.01, 1.14)	0.023
Positive predictive value	73.1 (68.2, 78.0)	77.6 (72.9, 82.2)	1.06 (1.00, 1.13)	0.062
Negative predictive value	87.1 (82.9, 91.5)	92.0 (88.6, 95.5)	1.06 (1.00, 1.11)	0.031

Chang	e in	patient r	nanad	ement

Pre-PET-CT	Post-PET-CT	Number of patients, n (%)	Number of patients due to PET-CT, n (%)
Resection*	No resection	61 (21)	58 (20) [†]
No resection	Resection	34 (13)	19 (7)
СТ	No CT	8 (10)	1 (1)
No CT	СТ	41 (9)	24 (5)
No further investigation	Further investigation	58 (13)	31 (7)
PET-CT identified second primary	_	5 (NA)	5 (NA)

• 56 (14%) of patients were changed from an incorrect to a correct stage with PET-CT

*290 patients planned for resection; †41 metastases, 17 benign.

Ghaneh et al. J Clin Oncol 2016; 34 (suppl): abstr 4008

4008: PET-PANC: Multi-centre prospective diagnostic accuracy and clinical value trial of FDG PET/CT in the diagnosis and management of suspected pancreatic cancer – Ghaneh P, et al

Key results (continued)

	All patients		PDAC		PDAC + resection	
	Nuclear medicine	Clinical oncology	Nuclear medicine	Clinical oncology	Nuclear medicine	Clinical oncology
Incremental costs, £	-645	-912	-639	-906	-1275	-1542
Incremental QALYs	0.0157		0.0119		0.0175	
ICER cost/QALY gained	PET-CT dominates					

Conclusions

- FDG PET/CT provided significant benefit in the diagnosis of pancreatic cancer
- FDG PET/CT influenced the staging and management of patients, and prevented resection in patients scheduled for surgery
- FDG PET/CT was cost effective at current reimbursement rates to the UK NHS

4019: A phase II, double-blind study of galunisertib+gemcitabine (GG) vs gemcitabine+placebo (GP) in patients (pts) with unresectable pancreatic cancer (PC) – Melisi D, et al

Study objective

• To evaluate the efficacy and safety of galunisertib + gemcitabine vs placebo + gemcitabine in patients with unresectable pancreatic cancer

Key patient inclusion criteria

- Pancreatic ADC with measurable disease (RECIST v1.1); ECOG PS ≤2
- Locally advanced (Stage II– III) or metastatic (Stage IV)
- Not amenable to resection with curative intent

(n=156)

PRMARY ENDPOINT(S)

• OS

*14d on/14d off per cycle for a total of 3 cycles; †Administered per label.

• Safety, biomarkers

Melisi et al. J Clin Oncol 2016; 34 (suppl): abstr 4019

4019: A phase II, double-blind study of galunisertib+gemcitabine (GG) vs gemcitabine+placebo (GP) in patients (pts) with unresectable pancreatic cancer (PC) – Melisi D, et al

Key results

STRONG, borrowing from historical data*	ITT patients	Deaths	HR	Median survival, months	HR (95% CI)	Probability (of HR <1) [†]
Galunisertib + Gemcitabine	104	78	0.018	8.9	0.80 (0.60, 1.09)	0.92
Gemcitabine + Placebo	52	43	0.023	7.1	-	-

Study ID [‡]	Ν	Events	Censored	mOS (95% CI)
JBAJ	52	43	9	7.6 (4.0, 9.9)
JEAL	67	52	15	8.3 (6.1, 10.8)
JMES	282	245	37	6.3 (5.4, 7.0)

*The number of events borrowed from historical data was ~50;

[†]A positive outcome required \geq 0.85 probability of HR <1;

[‡]Control arm was supplemented with data from these historical studies.

Melisi et al. J Clin Oncol 2016; 34 (suppl): abstr 4019

4019: A phase II, double-blind study of galunisertib+gemcitabine (GG) vs gemcitabine+placebo (GP) in patients (pts) with unresectable pancreatic cancer (PC) – Melisi D, et al

Key results (continued)

- HR (95% CI) for adjusted PFS was 0.78 (0.54, 1.13).
- The most frequent Grade 3/4 AEs possibly related to study treatment (galunisertib + gemcitabine vs gemcitabine + placebo) were anaemia (7.8 vs 13.5%), neutropenia (32.0 vs 26.9%) and thrombocytopenia (7.8 vs 9.6%)
- A decrease of >50% in CA19-9 was observed in 46% of patients in the galunisertib + gemcitabine group vs 43% of patients in gemcitabine + placebo group
 - 43% vs 41% had a >50% decrease in TGF β 1
- A reduction in TGFβ1 and CA19-9 correlated with improved OS

Conclusions

- In patients with pancreatic cancer, galunisertib + gemcitabine improved OS and PFS vs gemcitabine + placebo, and had a manageable toxicity profile
- Based on augmenting the current control survival data with historical information, this is a positive trial per protocol
- Patients with lower TGFβ1 levels may have greater benefit from galunisertib therapy

NEUROENDOCRINE TUMOUR

4005: NETTER-1 phase III: Efficacy and safety results in patients with midgut neuroendocrine tumors treated with ¹⁷⁷Lu-DOTATATE – Strosberg J, et al

Study objective

 To evaluate the efficacy and safety of ¹⁷⁷Lu-Dotatate + octreotide LAR 30 mg vs octreotide LAR 60 mg in patients with advanced midgut NETs

Key inclusion criteria

- Metastatic/locally advanced, inoperable, histologically proven, SSTR⁺, midgut NET
- Ki67 index ≤20% (Grade 1–2)
- PD on Octreotide LAR 20–30mg q3–4w*
- Karnofsky PS ≥60
 (n=230)

PRIMARY ENDPOINT(S)

• PFS (RECIST 1.1)

Safety, QoL

Strosberg et al. J Clin Oncol 2016; 34 (suppl): abstr 4005

*Label use; †High dose (off label).

4005: NETTER-1 phase III: Efficacy and safety results in patients with midgut neuroendocrine tumors treated with ¹⁷⁷Lu-DOTATATE – Strosberg J, et al

OCT, Octreotide LAR.

Strosberg et al. J Clin Oncol 2016; 34 (suppl): abstr 4005

4005: NETTER-1 phase III: Efficacy and safety results in patients with midgut neuroendocrine tumors treated with ¹⁷⁷Lu-DOTATATE – Strosberg J, et al

Key results (continued)

Haematological AEs, %	¹⁷⁷ Lu-Dotatate + O	CT 30 mg (n=111)	OCT 60 mg (n=110)		
	Any grade	Grade 3–4	Any grade	Grade 3–4	
Thrombocytopenia	25	2	1	0	
Lymphopenia	18	9	2	0	
Anaemia	14	0	5	0	
Leukopenia	10	1	1	0	
Neutropenia	5	1	1	0	

Conclusions

- ¹⁷⁷Lu-Dotatate + octreotide LAR 30 mg significantly improved PFS and ORR vs octreotide LAR 60 mg alone, in patients with advanced midgut NETs
- ¹⁷⁷Lu-Dotatate had a favourable safety profile, with no clinically relevant findings
- ¹⁷⁷Lu-Dotatate provides a major therapeutic benefit for patients progressing on SSAs, for whom few treatment options are available

OCT, Octreotide LAR.
4020: Genomic profiling to distinguish poorly differentiated neuroendocrine carcinomas arising in different sites – Bergsland EK, et al

Study objective

• To examine genomic alterations in extrapulmonary poorly differentiated NET (GEP-NET) of different sites in comparison to SCLC

Study design

- Genomic profiling of 976 NETs identified in Foundation Medicine Database (February 2012 to November 2011)
- Hybridisation-captured, adaptor ligation based libraries were used for a mean coverage of 600X for 92 cancer-related genes between two different assays
- All classes of genomic alternations identified
- Group 1 (n=274): Pathologist #1 analysed data from 274 of 368 GEP-NET:
 - 123 pancreas, 92 colon, 59 "other GI" (oesophageal, stomach, small intestine) and compared with 593 SCLC
- Group 2 (n=159): Pathologist #2 subsequently reviewed 159 samples
 - 91 pancreas, 51 colorectal, 17 "other GI"
 - Stricter criteria used and distinguished large vs small cell NEC
- Analysis restricted to n>30

4020: Genomic profiling to distinguish poorly differentiated neuroendocrine carcinomas arising in different sites – Bergsland EK, et al

Key results

	SCLC	Pancreas		CRC		Other GI
%	(n=593)	Group 1 (n=123)	Group 2 (n=91)	Group 1 (n=92)	Group 2 (n=51)	Group 1 (n=59)
TP53	90	18 S*, C*, O*	15 S*, C*	59 S*, P*	67 S*, P*	49 S*, P*
RB1	67	10 S*, C*	11 S*, C*	34 S*, P*	47 P*	29 S*
APC	2	3 C*	2 C*	47 S*, P*, O*	45 S*, P*	8 C*
CDKN2A	3	21 S, C*	22 S*, C*	5 P*, O*	2 P*	25 S*, C*
KRAS	4	7 C*	7 C*	37 S*, P*, O*	39 S*, P*	3 C*
MEN1	1	33 S*, C*, O*	29 S*, C*	3 P*	0 P*	2 P*
CDKN2B	1	16 S*, C*	18 S*	1 P*, O*	2	19 S*, C*
CCNE1	4	2 O*	2	1 O*	2	17 S*, P*, C*
DAXX	0	20 S*, C*, O*	14 S*	0 P*	0	0 P*
FBXW7	3	1 C*	0 C*	14 S*, P*	16 S*, P*	5

*Statistical significance vs SCLC (S), pancreas (P), colorectal (C) and other GI (O).

Bergsland et al. J Clin Oncol 2016; 34 (suppl): abstr 4020

4020: Genomic profiling to distinguish poorly differentiated neuroendocrine carcinomas arising in different sites – Bergsland EK, et al

Conclusions

- Genetic alterations in GEP-NET differ from SCLC and from each other
 - GEP-NET therapy may be site-specific and different to that for SCLC
- A significant number of patients with GEP-NET had "actionable" alterations, with the possibility of germ line testing