GI SLIDE DECK 2016 Selected abstracts Non-Colorectal Cancer from:

Supported by Eli Lilly and Company. Eli Lilly and Company has not influenced the content of this publication

Letter from ESDO

DEAR COLLEAGUES

It is my pleasure to present this ESDO slide set which has been designed to highlight and summarise key findings in digestive cancers from the major congresses in 2016. This slide set specifically focuses on the **European Society of Medical Oncology 2016 Congress** and is available in English, French and Japanese.

The area of clinical research in oncology is a challenging and ever changing environment. Within this environment, we all value access to scientific data and research which helps to educate and inspire further advancements in our roles as scientists, clinicians and educators. I hope you find this review of the latest developments in digestive cancers of benefit to you in your practice. If you would like to share your thoughts with us we would welcome your comments. Please send any correspondence to info@esdo.eu.

And finally, we are also very grateful to Lilly Oncology for their financial, administerial and logistical support in the realisation of this activity.

Yours sincerely,

Eric Van Cutsem Wolff Schmiegel Phillippe Rougier Thomas Seufferlein (ESDO Governing Board)

european society of digestive oncology

ESDO Medical Oncology Slide Deck Editors 2016

COLORECTAL CANCERS

Prof Eric Van Cutsem	Digestive Oncology Unit, University Hospital Gasthuisberg, Leuven, Belgium
Prof Wolff Schmiegel	Department of Medicine, Ruhr University, Bochum, Germany
Prof Thomas Gruenberger	Department of Surgery I, Rudolf Foundation Clinic, Vienna, Austr

PANCREATIC CANCER AND HEPATOBILIARY TUMOURS

- Prof Jean-Luc Van LaethamDepartment of Gastroenterology-GI Cancer Unit,
Erasme University Hospital, Brussels, Belgium
- Prof Thomas Seufferlein Clinic of Internal Medicine I, University of Ulm, Ulm, Germany

GASTRO-OESOPHAGEAL AND NEUROENDOCRINE TUMOURS

Prof Philippe RougierDigestive Oncology Department, European Hospital Georges Pompidou,
Paris, FranceProf Côme LepageUniversity Hospital & INSERM, Dijon, France

BIOMARKERS

Prof Eric Van Cutsem	Digestive Oncology Unit, University Hospital Gasthuisberg, Leuven, Belgium
Prof Thomas Seufferlein	Clinic of Internal Medicine I, University of Ulm, Ulm, Germany

Glossary

1L	first line	IRR	immediate radical re-resection
2L	second line	iv	intravenous
5FU	5-fluorouracil	KPS	Karnofsky performance status
AE	adverse event	LAPC	locally advanced pancreatic cancer
AMP	amplification	LAR	long-acting release
ATM	ataxia-telangiectasia mutated	INR	lymph node ratio
BCLC	Barcelona Clinic Liver Cancer		leucovorin
BSA	body surface area	MSI	microsatellite instability
	corbobydrate accordiated antigon 10.0	MGT	modian survival time
	(National Cancer Institute) Common Terminology		mutant
(NOI)-CICKE	(National Calicer Institute)-Common Terminology		nut avaluable
0			
	confidence interval	NET	neuroendocrine tumour
CIN	chromosome instability	NGS	next generation sequencing
CIS	cisplatin	NMR	non-metabolic responder
CR	complete response	OGJ	oesophagogastric junction
CRT	chemoradiotherapy	OR	odds ratio
CT	chemotherapy	ORR	objective response rate
DCF	docetaxel, cisplatin, 5FU	(m)OS	(median) overall survival
DCR	disease control rate	PARP	poly ADP ribose polymerase
DMFS	distant metastasis-free survival	PCI	peritoneal cancer index
Doc	docetaxel	PD	progressive disease
EAC	oesophageal adenocarcinoma	PET	positron emission tomography
EBV	Epstein-Barr virus	(m)PFS	(median) progression-free survival
EMR	early metabolic responder	PR	partial response
ESCC	oesophageal squamous cell carcinoma	PS	performance status
FCOG	Eastern Cooperative Oncology Group	(HR)Qol	(health-related) quality of life
FCX	epirubicin cisplatin capecitabine	R	randomised
EGER	endothelial growth factor receptor	RECIST	Response Evaluation Criteria In Solid Tumors
FOX	enirubicin ovalinlatin canecitabine	RR	response rate
EO-5D	EuroOol five dimension questionnaire	RT	radiotherapy
EQ 3D EACT(-Hen)	Functional Assessment of Cancer	RTK	recentor tyrosine kinase
TACT(-riep)	Therapy(-Henatobiliary)	SVE	serious adverse event
EVC	full applycic sot	SAL	senous auverse eveni
	fluoropponencia situ hybridioation	5D 66A	scapic disease
		JOA	Somalosialin analogue
GC	gastric cancer		the Cancel Genome Allas
GEJ	gastroesophageal junction	TEAE	treatment-emergent adverse event
HCC	nepatocellular carcinoma		tyrosine kinase innibitor
HER2	numan epidermal growth factor receptor 2	LIP VID	time to progression
HK	hazard ratio	VAS	visual analogue scale
IGBC	incidental gallbladder cancer	WBC	white blood cell
IHC	immunohistochemistry	WRT	wedge resection rate

Contents

 Cancers of the oesophagus and stomach 	<u>6</u>
- Preoperative	<u> </u>
- Perioperative	<u>13</u>
 First-line therapy 	<u>19</u>
 Second-line therapy 	<u>33</u>
 Cancers of the pancreas, small bowel and hepatobili 	iary tract <u>43</u>
 Pancreatic cancer 	<u>44</u>
 Gallbladder cancer 	<u>50</u>
 Hepatocellular carcinoma 	<u>56</u>
 Neuroendocrine tumour 	<u>62</u>

Note: To jump to a section, right click on the number and 'Open Hyperlink'

CANCERS OF THE OESOPHAGUS AND STOMACH

PREOPERATIVE

Cancers of the oesophagus and stomach

Study objective

• To investigate whether modifying neoadjuvant therapy improves histological response in patients not showing early metabolic response after first cycle of treatment

PRIMARY ENDPOINT(S)

• Histological response (<10% residual tumour)

*Based on PET scans at baseline and post-treatment (after receiving 1 cycle of CIS and 5FU on d15), if SUV_{max} decreased by \geq 35%, patients were classed as EMR or otherwise as NMR. Ba

SECONDARY ENDPOINTS

 PET response, toxicity, tumour down-staging, OS, DFS, QoL, translational sub-studies

Barbour A et al. Ann Oncol 2016; 27 (suppl 6): abstr 6100

Key results

Primary tumour response in all study groups

Study group	Complete/extensive histological response, n/N (%)	95% CI
EMR	3/45 (7)	2, 17
NMR (not randomised)	0/11 (0)	0, 26
All not randomised*	3/56 (5)	2, 14
CIS + 5FU + Doc [†]	6/31 (19)	9, 36
CIS + 5FU + Doc with RT ⁺	22/35 (63)	46, 77

*Excludes 2 patients with no d15 PET (both with no histological response); [†]patients without surgery categorised as no histological response.

Barbour A et al. Ann Oncol 2016; 27 (suppl 6): abstr 6100

Key results (continued)

Clinical assessment,* n (%)		EMR (n=45)	CIS + 5FU + Doc (n=31)	CIS + 5FU + Doc + RT (n=35)	All patients (n=111)
Endoscopic tumour response	Extensive: >90 regression	6 (13)	2 (6)	7 (20)	15 (14)
	Partial: 50–90% regression	11 (24)	11 (35)	12 (34)	34 (31)
	Minor: <50% regression	25 (56)	11 (35)	6 (17)	42 (38)
	Unknown	3 (7)	7 (23)	10 (29)	20 (18)
CT – local disease response	CR	2 (4)	1 (3)		3 (3)
	Persistent local disease	38 (84)	25 (81)	33 (94)	96 (86)
	Local PD		1 (3)	2 (6)	3 (3)
	Unknown	5 (11)	4 (13)		9 (8)

*Table excludes 11 NMR not randomised and 2 with no d15 PET. Barbour A et al. Ann Oncol 2016; 27 (suppl 6): abstr 6100

- Grade 3/4 AEs were observed in:
 - 19/58 (33%) patients on CIS + 5FU and 13/45 (29%) EMRs on CIS + 5FU
 - 14/31 (45%) patients on CIS + 5FU + Doc and 25/35 (71%) patients on CIS + 5FU + _ Doc with RT

Barbour A et al. Ann Oncol 2016; 27 (suppl 6): abstr 6100

Key results (continued)

- Oesophagectomy was performed in:
 - 45 (100%) EMR
 - 28/31 (90%) patients on CIS + 5FU + Doc
 - 33/35 (94%) patients on CIS + 5FU + Doc with RT (2 progressed)
- R0 (>1 mm margin) resection was achieved in:
 - 31/45 (69%) EMR
 - 18/28 (64%) patients on CIS + 5FU + Doc
 - 31/33 (94%) patients on CIS + 5FU + Doc with RT

Conclusions

- Docetaxel added to a combination of CIS + 5FU, particularly CIS + 5FU + Doc with RT, can induce higher rates of histological responses in NMRs
- The results of this study, therefore, indicate that designing a multimodality therapy based on individual PET response is safe and feasible for patients with EAC although further investigations are required to study the impact of such therapy on survival

PERIOPERATIVE

Cancers of the oesophagus and stomach

Study objective

• To assess the safety and feasibility of adding the TKI lapatinib to perioperative ECX

PRIMARY ENDPOINT

 Determine recommended dosing regimen (grade 3/4 diarrhoea not exceed 20%)

ECX: Epirubicin 50 mg/m² iv d1; cisplatin 60 mg/m² iv d1; capecitabine 1250 mg/m² po daily

ECX + L: Epirubicin 50 mg/m² iv d1; cisplatin 60 mg/m² iv d1; capecitabine at a reduced 1000 mg/m² daily; lapatinib 1250 mg daily. Maintenance lapatinib at 1500 mg po daily.

Key results

Pre-operative chemotherapy and surgery

n (%)	ECX (n=24)	ECX + L (n=20)	Total (n=44)
Received all 3 cycles	23 (96)	16 (80)	39 (88)
Dose reduction	9 (38)	9 (45)	18 (41)
Lapatinib dose reduced	-	4 (20)	-
Surgery status, n			
Surgery not yet due	1	1	2
Unclear if performed	2	0	2
No resection*	5	3	8
Resection performed	16	16	32

*Reasons for no surgery: disease progression (4 patients; 2 ECX, 2 ECX + L); found to be inoperable (3 patients; 3 ECX); patient not fit enough (1 patient; 1 ECX + L).

Smyth E et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA26

Key results (continued)

Grade ≥3 AEs during chemotherapy

\mathbf{D} re exercise $\mathbf{p}(0/)$	ECX	ECX + L	Total
Pre-operative, n (%)	n=24	n=19*	n=43
Neutropenia	5 (21)	8 (42)	13 (30)
Diarrhea	0 (0)	4 (21)	4 (9)
Lethargy	1 (4)	2 (11)	3 (7)
Vomiting	0 (0)	2 (11)	2 (5)
Infection with neutropenia	0 (0)	1 (5)	1 (2)
Post-operative, n (%)	n=6	n=10	n=16
Neutropenia	1 (17)	4 (40)	5 (31)
Lethargy	1 (17)	0 (0)	1 (6)
Infection with neutropenia	0 (0)	0 (0)	0 (0)

*20 ECX + L began chemotherapy; of these, 1 withdrew on day 1 and did not provide any toxicity information, so was not included.

Smyth E et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA26

Key results (continued)

Post-operative complications

n (%)	ECX (n=15)	ECX + L (n=16)	Total (n=31)
Anastomotic leak	3 (20)	2 (13)	5 (16)
Wound healing	1 (7)	3 (19)	4 (13)
Superficial wound infection	1 (7)	3 (19)	4 (13)
Respiratory tract infection	2 (13)	2 (13)	4 (13)
Respiratory failure	1 (7)	2 (13)	3 (10)
Cardiac complications	2 (13)	0 (0)	2 (6)
Empyema	2 (13)	0 (0)	2 (6)

Conclusions

- The addition of lapatinib to perioperative ECX chemotherapy, with a reduced capecitabine dose, is feasible
- There was a suggestion for an increase in diarrhoea and neutropenia, but this did not appear to compromise operative management

FIRST-LINE THERAPY

Cancers of the oesophagus and stomach

Study objective

• To evaluate the efficacy of intraperitoneal paclitaxel + S-1/paclitaxel vs. standard systemic chemotherapy in patients with pathologically confirmed gastric adenocarcinoma

Key patient inclusion criteria

- Pathologically confirmed GC
- Peritoneal metastasis (with no distant metastasis)
- No or <2 months prior CT
- ECOG PS 0-1
- No prior gastrectomy
- No frequent ascites (n=183)

PRIMARY ENDPOINT(S)

• OS

*Paclitaxel 50 mg/m² iv d1+8 + S-1 80 mg/m²/d d1-14, q3w; †Cisplatin 60 mg/m² iv d8 + S-1 80 mg/m²/d d1-21, q5w.

Key results

OS: Primary analysis (FAS population)

n=164	MST, months (95% CI)	p-value
Intraperitoneal paclitaxel + S-1/paclitaxel	17.7 (14.7, 21.5)	0.080*
S-1/cisplatin	15.2 (12.8, 21.8)	0.000
HR [†] 0.72 (95% CI 0.49	, 1.04); p=0.081	

Best response (RECIST v1.1) (in patients with target lesions)	CR	PR	SD	PD	NE	RR, %	Fischer's test
Intraperitoneal paclitaxel + S-1/paclitaxel (n=17)	0	9	4	4	0	53	p=1.0
S-1/cisplatin (n=5)	0	3	1	0	1	60	

*Stratified log-rank test; [†]Cox regression analysis.

Key results (continued) OS by ascites level (sensitivity analysis)

*For the FAS population: HR 0.59 (95% CI 0.39, 0.87); p=0.0079 *For the PPS population: HR 0.48 (95% CI 0.32, 0.73); p=0.0008

*Cox regression analysis.

Key results (continued)

OS according to PCI level in patients successfully classified by laparoscopy (n=133)

Key results (continued)

Grade 3/4 AEs occurring in ≥1%, n (%)	Intraperitoneal paclitaxel + S-1/paclitaxel (n=116)	S-1/cisplatin (n=53)	Fisher's test, p-value
Leukopenia	29 (25)	5 (9)	0.023
Neutropenia	58 (50)	16 (30)	0.028
Anaemia	15 (13)	6 (11)	1.000
Thrombocytopenia	0 (0)	0 (0)	-
Febrile neutropenia	9 (8)	1 (2)	0.174
Creatinine increased	1 (1)	1 (2)	0.525
Nausea	8 (7)	5 (9)	0.549
Vomiting	4 (3)	2 (4)	1.000
Diarrhoea	10 (9)	3 (6)	0.757
Anorexia	12 (10)	7 (13)	0.605
Fatigue	9 (8)	4 (8)	1.000
Sensory neuropathy	2 (2)	0 (0)	1.000

Conclusions

- The primary analysis did not show statistical superiority with intraperitoneal paclitaxel + S-1/paclitaxel vs. S-1/cisplatin alone in patients with GC and peritoneal metastasis
- However, sensitivity analyses regarding imbalance of ascites indicated clinical efficacy with intraperitoneal paclitaxel + S-1/paclitaxel in GC with peritoneal metastasis

Objective

 To investigate TCGA-identified potential therapeutic targets, unique to oesophagogastric adenocarcinoma subtypes, including RTK alterations in CIN tumours and immunotherapy in EBV and MSI tumours

Methods

 Patients with stage IV oesophagogastric adenocarcinoma (n=319) were analysed using an NGS assay (MSK-IMPACT) capable of detecting somatic mutations (MUT), deletions and amplifications (AMP) with results correlated with clinical outcomes

Key results

Sample characteristics

HER2-positive cases	n=105
Pre-trastuzumab, n	88
Post-trastuzumab, n	49
Matched pre-/post-trastuzumab progression samples, n	33
Pre-trastuzumab HER2-positive ^a , n (%) HER2 IHC 3+ HER2 IHC 2+/FISH >2.2 IMPACT only (insufficient sample for IHC)	60 (57) 41 (39) 4(4)
Loss of HER2 in post-trastuzumab sample, n/N (%)	12/49 ^b (24)

^a11 patients HER2 IHC/FISH positive per outside report, no baseline sample for confirmation of status at MSK by IHC/FISH and IMPACT

^b4 post-trastuzumab samples tested by IHC/FISH/IMPACT and 8 additional samples tested by IHC/FISH only (IMPACT not available on post-trastuzumab sample)

Key results (continued)

Janjigian YY et al. Ann Oncol 2016; 27 (suppl 6): abstr 6120

Key results (continued)

Post treatment (n=40 patient

Janjigian YY et al. Ann Oncol 2016; 27 (suppl 6): abstr 6120

Conclusions

- These results indicate that patients with acquired trastuzumab resistance display HER2 loss and may also possess secondary alterations in the RTK/RAS/PI3K pathway
 - Frequent mutations such as SMAD4, KRAS and EGFR were identified
- These data are in line with the observed failure rate for TDM1 and lapatinib in 2L treatment
- The use of repeat biopsies is recommended so that appropriate 2L HER2-directed therapy may be selected
- This observed loss of heterozygosity in BRCA 1/2 may influence oesophagogastric cancer pathogenesis and therapy response
- It is important to identify MSI and EBV oesophagogastric adenocarcinoma subsets (unique subsets) so that they may be treated with immunotherapy

614O: Final results of the FAST study, an international, multicenter, randomized, phase II trial of epirubicin, oxaliplatin, and capecitabine (EOX) with or without the anti-CLDN18.2 antibody IMAB362 as first-line therapy in patients with advanced CLDN18.2+ gastric and gastroesophageal junction (GEJ) adenocarcinoma – Schuler et al

Study objective

 To evaluate the expression of Claudin18.2 (CLDN18.2), which mediates the anti-cancer activity of IMAB362 – in patients with advanced/recurrent gastric and GEJ cancer by using immunohistochemistry

*Epirubicin 50 mg/m², oxaliplatin 130 mg/m² d1 and capecitabine 625 mg/m² bid, d1–21; q22d

Schuler M et al. Ann Oncol 2016; 27 (suppl 6): abstr 6140

614O: Final results of the FAST study, an international, multicenter, randomized, phase II trial of epirubicin, oxaliplatin, and capecitabine (EOX) with or without the anti-CLDN18.2 antibody IMAB362 as first-line therapy in patients with advanced CLDN18.2+ gastric and gastroesophageal junction (GEJ) adenocarcinoma – Schuler et al

Key results

PFS and OS

	EOX (n=84)	EOX + IMAB362 800/600 mg/m² (n=77)	EOX + IMAB362 1000 mg/m² (n=85)
mPFS, months	4.8	7.9	7.1
HR (95% CI)		0.47 (0.31, 0.70)	0.59
p-value		0.0001	0.003
mOS, months	8.4	13.2	9.7
HR (95% CI)		0.51 (0.36, 0.73)	0.76
p-value		0.0001	0.00498

- Common IMAB362-related AEs included vomiting, neutropenia and anaemia, which were mostly of NCI-CTCAE grade 1/2
- Grade 3/4 events were not significantly increased by IMAB362

614O: Final results of the FAST study, an international, multicenter, randomized, phase II trial of epirubicin, oxaliplatin, and capecitabine (EOX) with or without the anti-CLDN18.2 antibody IMAB362 as first-line therapy in patients with advanced CLDN18.2+ gastric and gastroesophageal junction (GEJ) adenocarcinoma – Schuler et al

Conclusions

- Combination therapy of IMAB362 and EOX is a viable and tolerable 1L treatment option for patients with advanced or metastatic oesophagogastric adenocarcinoma
- A significant improvement in PFS and OS was observed in the current study in patients subjected to combined IMAB362 + EOX therapy
- These results lay a strong basis for the phase 3 development of IMAB362

SECOND-LINE THERAPY

Cancers of the oesophagus and stomach

Study objective

 To compare the efficacy and safety of irinotecan + S-1 with S-1 alone in patients with advanced ESCC refractory to platinum- or taxane-based 1L CT

Key results

Patient entry characteristics, n (%)		Irinotecan + S-1 (n=53)	S-1 alone (n=49)	p-value
	0	21 (39.6)	17 (34.7)	
ECOG	1	29 (54.7)	30 (61.2)	0.79700 ^a
	2	3 (5.7)	2 (4.1)	
	Poorly differentiated	23 (43.4)	23 (46.9)	
Tumour grade	Moderately differentiated	27 (50.9)	25 (51.0)	0.73700 ^a
	Well differentiated	3 (5.7)	1 (2.0)	
Motostosis status	Local	2 (3.8)	1 (2.0)	
Melasiasis sialus	Distal	51 (96.2)	48 (98.0)	
	No	30 (56.6)	35 (71.4)	0 12000b
Previous surgery	Yes	23 (43.4)	14 (28.6)	0.12000
Draviaua CT	1 regimen	44 (83.0)	38 (79.2)	0.62100b
Previous CI	2 regimens	9 (17.0)	10 (20.8)	0.02100°
Draviaua DT	No	26 (49.1)	24 (50.0)	0.02500b
Previous RI	Yes	27 (50.9)	24 (50.0)	0.92000

^aFisher's test; ^bChi-squared test.

Huang J et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA27

Key results (continued)

Huang J et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA27

Key results (continued)

DD					
ĸĸ	Response, n (%)	Irinotecan + S-1	S-1 alone	Total	p-value
	CR + PR	15 (28.3)	6 (12.2)	21 (20.6)	
	SD + PD	38 (71.7)	43 (87.8)	81 (79.4)	0.04500 ^a
	Total	53	49	102	

Grade 3/4 AEs

AE, n (%)	Irinotecan + S-1	S-1 alone	p-value
Anaemia	2 (3.8)	1 (2.0)	3 (2.9)
Leukopenia	9 (17.0)	0 (0.0)	9 (8.8)
Neutropenia	6 (11.3)	0 (0.0)	6 (5.9)
Thrombocytopenia	2 (3.8)	0 (0.0)	2 (2.0)
Diarrhoea	2 (3.8)	1 (2.0)	3 (2.9)
Nausea	3 (5.7)	0 (0.0)	3 (2.9)
Vomiting	1 (1.9)	1 (2.0)	2 (2.0)
Fatigue	2 (3.8)	1 (2.0)	3 (2.9)
Bilirubin	1 (1.9)	0 (0.0)	1 (1.0)

^aChi-squared test.

Huang J et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA27

Conclusions

- Compared with S-1 alone, irinotecan + S-1 regimen appears to show clinically meaningful PFS benefit; 44% risk reduction in PD or death was observed
- Irinotecan + S-1 regimen was feasible and well tolerated in patients with advanced ESCC
- Irinotecan + S-1 regimen is a suitable treatment option in patients with advanced oesophageal squamous cell carcinoma after failure of prior platinum- or taxanebased CT

Study objective

 To evaluate the efficacy and safety of olaparib (an oral PARP inhibitor) in combination with paclitaxel compared with placebo in combination with paclitaxel in patients with advanced gastric cancer

CO-PRIMARY ENDPOINTS

 OS for full analysis set (FAS) and ATM-negative patients

SECONDARY ENDPOINTS

• PFS, ORR, safety

Note: Based on data from abstract only

Bang Y et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA25

Key results

	Olaparib + paclitaxel (n=263)	Placebo + paclitaxel (n=262)	HR (97.5% CI); p-value	
All patients (FAS; 72	.6% OS maturit	y)		
mOS, months mPFS, months Adjusted ORR,* %	8.8 3.7 24.0	6.9 3.2 15.8	0.79 (0.63, 1.00); 0.0262 0.84 (0.67, 1.04); 0.0645 1.69 (0.92, 3.17); 0.0548	
ATM- patients (68.1% OS maturity)				
mOS, months mPFS, months Adjusted ORR,* %	12.0 5.3 37.5	10.0 3.7 16.1	0.73 (0.40, 1.34); 0.2458 0.74 (0.45, 1.29); 0.2199 4.24 (0.95, 23.23); 0.0309	

*Response rate in patients with measurable disease only

Note: Based on data from abstract only

Bang Y et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA25

Key results (continued)

	Olaparib + paclitaxel (n=263)	Placebo + paclitaxel (n=262)
Any grade ≥3 AEs, % Neutropenia	78 30	62 23
SAEs, %	35	25
AEs leading to discontinuation, %	16	10

Conclusions

- With olaparib + paclitaxel there was a trend for OS benefit compared with placebo + paclitaxel in the FAS and ATM-negative patients
 - There was no statistically significant increase in OS, PFS or ORR with olaparib + paclitaxel
- There were no new safety signals for olaparib. Olaparib + paclitaxel followed by olaparib monotherapy was well tolerated

CANCERS OF THE PANCREAS, SMALL BOWEL AND HEPATOBILIARY TRACT

Cancers of the pancreas, small bowel and hepatobiliary tract

PANCREATIC CANCER

Study objective

To evaluate the efficacy and safety of chemoradiotherapy (CRT) with/without induction chemotherapy

*Patients were stratified by institution and CA19-9 level (<1000 / ≥1000 IU/mL)

**According to body surface area (m²; BSA < 1.25, $1.25 \le BSA \le 1.5$, BSA ≥ 1.5)

PRIMARY ENDPOINT

• OS (1 year after accrual completion)

SECONDARY ENDPOINTS

• PFS, DMFS, CA19-9 response, safety

Loka T et al. Ann Oncol 2016; 27 (suppl 6): abstr 621PD

 A total of 26 patients discontinued treatment (9 in Arm A, 17 in Arm B), with 76 patients still on treatment at the end of the study

Key results (continued)

Loka T et al. Ann Oncol 2016; 27 (suppl 6): abstr 621PD

CTCAE v4.0	Arm A	(n=50), %	Arm B	(n=49), %
	Any	Grade 3–4	Any	Grade 3–4
Decreased WBC	94	62	94	61
Decreased neutrophils	92	54	96	57
Anaemia	100	18	98	12
Decreased platelet count	100	10	94	14
Anorexia	88	16	76	4
Fatigue	66	8	65	4
Nausea	80	8	63	2
Diarrhoea	46	6	37	4
Vomiting	50	2	33	4
Biliary infection	20	20*	27	27
Gastric/duodenal haemorrhage	10	10*	12	6
Gastric/duodenal ulcer	6	6	8	4
Pneumonitis	6	4*	4	2

Key results (continued)

*Treatment-related deaths occurred in 3 patients in Arm A (pneumonitis, duodenal haemorrhage and biliary infection)

Conclusions

- 2-year OS was higher in Arm A than in Arm B, and the HR value exceeded 1.186 (the pre-specified decision rule value)
- Treatment was generally well tolerated, although the number of AEs was higher in Arm A and 3 treatment-related deaths occurred in this arm
- Compared with CRT alone, the addition of induction gemcitabine to CRT was less toxic in the short-term, but resulted in poorer long-term survival

Cancers of the pancreas, small bowel and hepatobiliary tract

GALLBLADDER CANCER

Study objectives

- To assess
 - the dependency of treatment of incidental gallbladder carcinoma (IGBC) on the surgical or oncological expertise of the clinics
 - the techniques of liver resection in various stages of cancer
 - importance of lymph node ratio and
 - multimodal aspects

Methods

Patients with IGBC from the German registry data (n >1000)

Patients analysed (n=974)

Goetze TO et al. Ann Oncol 2016; 27 (suppl 6): abstr 619PD

Key results

- To date, >950 cases of IGBC in the German Registry have been analysed
- There was an IRR in 42 of 113 T1b cases, with a significant survival benefit for T1b after IRR
- A significant survival benefit was also seen for the 228 T2 and 80 T3 with IRR of the 461 T2 and 215 T3 tumours

Key results (continued)

- Comparison of liver resection showed good results for the WRT in T1b and T2; more radical techniques showed better results for T3
- Re-resection was performed for <50% of T2–3 tumours in the registry
- Liver resection was performed significantly more often in clinics with high patient volume

Goetze TO et al. Ann Oncol 2016; 27 (suppl 6): abstr 619PD

Key results (continued)

- Lymph node ratio (LNR) could be estimated in 212 patients, with statistics showing it to be a significant prognostic factor
 - Referral of patients from a low- to high- volume clinic has no practical relevance

Conclusions

- IGBCs up to T1b need radical surgery
- Wedge-resection is an efficient procedure for T1b / T2 IGBC as it is less invasive despite oncological adequacy; WRT implants can also be fitted in low-volume centres that have limited experience in liver surgery
- The number of retrieved lymph nodes is essential
- Adherence to correct decision processes benefits more patients
- For a further increase in cure rate in T2-3 IGBC patients, another multimodal therapy (GAIN) trial has already been planned

Cancers of the pancreas, small bowel and hepatobiliary tract

HEPATOCELLULAR CARCINOMA

Study objective

 To evaluate the efficacy, safety and QoL of regoratenib in patients with HCC who had disease progression on sorafenib

PRIMARY ENDPOINT(S)

• OS

SECONDARY ENDPOINTS

 HRQoL (FACT-Hep, EQ-5D), OS, PFS, TTP, DCR

Note: Based on data from abstract only

Bruix J et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA28

Key results (continued)

	Regorafenib (n=379)	Placebo (n=194)	HR (95% CI)	p-value
mOS, months	10.6	7.8	0.63 (0.50, 0.79)	<0.001
mPFS, months			0.46 (0.37, 0.56)	<0.001
Median TTP, months			0.44 (0.36, 0.55)	<0.001
DCR, %	65.2	36.1		<0.001

Least square mean time-adjusted AUC (95% CI)	Regorafenib (n=379)	Placebo (n=194)	p-value
EQ-5D	0.76 (0.75, 0.78)	0.77 (0.75, 0.79)	0.47
EQ-5D visual analogue scale (VAS)	71.68 (70.46, 72.90)	73.45 (71.84, 75.06)	0.06
FACT-General	75.14 (74.12, 76.16)	76.55 (75.20, 77.90)	0.07
FACT-Hep total	129.31 (127.84, 130.79)	133.17 (131.21, 135.12)	<0.001

Note: Based on data from abstract only Bruix J et al. Ann Oncol 2016; 27 (suppl 6): abstr LBA28

Key results (continued)

	Regorafenib (n=379)	Placebo (n=194)
Any grade ≥3 AE, %	79.7	58.5
Grade ≥3 AEs occurring more frequently with regorafenib, %		
Hypertension	15.2	4.7
Hand–foot skin reaction	12.6	0.5
Fatigue	9.1	4.7
Diarrhoea	3.2	0

Conclusions

- Following regoration treatment, a statistically significant improvement in OS was observed for patients with HCC who progressed on prior soration treatment
 - Risk of death was reduced by 37% (HR 0.63; 95% CI 0.50, 0.79; p<0.001)
 - mOS was 10.6 vs. 7.8 months
- Regorafenib treatment significantly improved PFS and TTP
- A significantly higher response rate and DCR (almost doubled) was observed in patients treated with regorafenib
- No new AEs related to regorafenib were seen in this study

Cancers of the pancreas, small bowel and hepatobiliary tract

NEUROENDOCRINE TUMOUR

Study objective

• To evaluate the efficacy and safety of ¹⁷⁷Lu-Dotatate compared with octreotide LAR in patients with advanced, progressive somatostatin receptor positive midgut NETs

PRIMARY ENDPOINT

• PFS (RECIST 1.1)

SECONDARY ENDPOINTS

• ORR, OS, TTP, safety, QoL

 Subgroup analyses for PFS confirmed consistent benefits of ¹⁷⁷Lu-Dotatate irrespective of stratification and prognostic factors including tumour grade, age, gender, tumour marker levels and levels of radiotracer uptake

Key results (continued)

*Excludes patients with no post-baseline scan or central response available.

Key results (continued)

Treatment-related AEs, n (%)	¹⁷⁷ Lu-Dotatate (n=111)	Octreotide LAR (n=110)
Treatment-related AEs	95 (86)	34 (31)
Treatment-related SAEs	10 (9)	1 (1)
Treatment-related withdrawal	5 (5)	0 (0)
Grade 3/4 AEs occurring in ≥1%,	%	
Nausea	4	2
Vomiting	7	0
Diarrhoea	3	2
Abdominal pain	3	5
Fatigue/asthenia	2	2
Thrombocytopenia	2	0
Lymphocytopenia	9	0
Leukopenia	1	0
Neutropenia	1	0

Conclusions

- Clinically meaningful improvements were observed for ¹⁷⁷Lu-Dotatate vs. Octreotide LAR in PFS (p<0.0001) and ORR (18% vs. 3%; p=0.0008)
- Interim analysis suggests an increased OS (14 vs. 26 deaths), but to be confirmed in the final analysis
- A favourable safety profile was observed for ¹⁷⁷Lu-Dotatate, with no clinically relevant findings reported especially regarding haematological and renal and parameters
- Preliminary QoL analysis suggests benefit in key domains that are pertinent to midgut NETs, including global health and diarrhoea
 - No clear evidence of benefit in flushing/sweats vs. high-dose octreotide