GI SLIDE DECK 2020

Selected abstracts from:

Letter from ESDO

DEAR COLLEAGUES

It is our pleasure to present this ESDO slide set which has been designed to highlight and summarize key findings in digestive cancers from the major congresses in 2020. This slide set specifically focuses on the **ESMO World Congress on Gastrointestinal Cancer 2020 Virtual Meeting** and is available in English, French, Chinese and Japanese.

The area of clinical research in oncology is a challenging and ever changing environment. Within this environment, we all value access to scientific data and research which helps to educate and inspire further advancements in our roles as scientists, clinicians and educators. I hope you find this review of the latest developments in digestive cancers of benefit to you in your practice. If you would like to share your thoughts with us we would welcome your comments. Please send any correspondence to info@esdo.eu.

Finally, we are also very grateful to Lilly Oncology for their financial, administrative and logistical support in the realization of this activity.

Yours sincerely,

Eric Van Cutsem
Thomas Seufferlein
Côme Lepage
Phillippe Rougier (hon.)

Thomas Gruenberger
Tamara Matysiak-Budnik
Jaroslaw Regula
Jean-Luc Van Laethem

(ESDO Governing Board)

ESDO Medical Oncology Slide Deck

Editors 2020

COLORECTAL CANCERS

Prof Eric Van Cutsem Digestive Oncology, University Hospitals, Leuven, Belgium

Prof Thomas Gruenberger Department of Surgery, Kaiser-Franz-Josef Hospital, Vienna, Austria

Prof Jaroslaw Regula Department of Gastroenterology and Hepatology, Institute of Oncology, Warsaw, Poland

PANCREATIC CANCER AND HEPATOBILIARY TUMOURS

Prof Jean-Luc Van Laethem Digestive Oncology, Erasme University Hospital, Brussels, Belgium

Prof Thomas Seufferlein Clinic of Internal Medicine I, University of Ulm, Ulm, Germany

GASTRO-OESOPHAGEAL AND NEUROENDOCRINE TUMOURS

Prof Côme Lepage University Hospital & INSERM, Dijon, France

Prof Tamara Matysiak Hepato-Gastroenterology & Digestive Oncology, Institute of Digestive Diseases,

Nantes, France

BIOMARKERS

Prof Eric Van Cutsem Digestive Oncology, University Hospitals, Leuven, Belgium

Prof Thomas Seufferlein Clinic of Internal Medicine I, University of Ulm, Ulm, Germany

Glossary

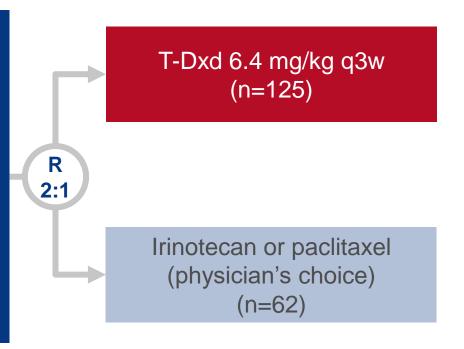
1L	first-line	FOLFIRINOX	5-fluouracil + leucovorin + oxaliplatin	PCI	Peritoneal Cancer Index
2L	second-line	()======	+ irinotecan	pCR	pathological complete response
3L	third line	(m)FOLFOX	(modified) leucovorin + 5-fluorouracil +	PD	progressive disease
5FU	5-fluouracil		oxaliplatin	PDAC	pancreatic ductal adenocarcinoma
AE	adverse event	GEJ	gastroesophageal junction	PD-(L)1	programmed death-(ligand) 1
AFP	alpha-fetoprotein	GGT	gamma-glutamyl transferase	PET	positron emission tomography
ALBI	albumin-bilirubin	GI	gastrointestinal	(m)PFS	(median) progression-free survival
ALT	alanine aminotransferase	GIST	gastrointestinal stromal tumour	PK	pharmacokinetics
AJCC	American Joint Committee on Cancer	Gy	Gray	pMMR	mismatch repair proficient
AST	aspartate aminotransferase	HAIC	hepatic arterial infusion chemotherapy	ро	orally
Atezo	atezolizumab	HBV	hepatitis B virus	PR	partial response
BD	budding grade	HCC	hepatocellular carcinoma	PRO	patient-reported outcome
Bev	bevacizumab	HCV	hepatitis C virus	PS	performance status
(B)ICR	(blinded)-independent central review	HIPEC	hyperthermic intraperitoneal	q(2/3/4/6)w	every (2/3/4/6) week(s)
bid	twice daily		chemotherapy	QoL	quality of life
BOR	best overall response	HR	hazard ratio	RAM	ramucirumab
BSC	best supportive care	ICU	intensive care unit	R	randomized
CAPIRI	capecitabine + irinotecan	IO	immunotherapy	R0	resection 0
CAPOX	capecitabine + oxaliplatin	IPI	ipilimumab	R1	resection 1
CBR	clinical benefit rate	ia	intra-arterial	RECIST	Response Evaluation Criteria In
CCA	cholangiocarcinoma	iv	intravenous		Solid Tumors
CI	confidence interval	KPS	Karnofsky performance status	RFS	relapse-free survival
CPS	combined positive score	LV	leucovorin	RR	response rate
CR	complete response	mCRC	metastatic colorectal cancer	SAE	serious adverse event
CRC	colorectal cancer	MMC	mitomycin C	SD	stable disease
CRT	chemoradiotherapy	mo	months	SOR	sorafenib
CT	chemotherapy	MSI	microsatellite instability	T-Dxd	trastuzumab deruxtecan
D	day	MSI-H	high microsatellite instability	TEAE	treatment-emergent adverse event
DCR	disease control rate	MSS	microsatellite stable	TRAE	treatment-related adverse event
DLTs	dose-limiting toxicities	MTB	multidisciplinary tumour board	TRG	tumour regression grade
dMMR	mismatch repair deficient	MTD	maximum tolerated dose	TSR	tumour-stroma ratio
DoR	duration of response	MVI	microvascular invasion	TTD	time to deterioration
ECOG	Eastern Cooperative Oncology Group	NA	not available	TTP	time to progression
EGFR	epidermal growth factor receptor	NALIRIFOX	liposomal irinotecan + 5-fluouracil +	TTR	time to response
EHS	extrahepatic spread	TV/ LITTII O/T	leucovorin + oxaliplatin	UTI	urinary tract infection
EORTC QLQ	European Organisation for Research and	NE	not evaluable/estimable	WBC	white blood cell
LOTTIO QLQ	Treatment of Cancer Quality of Life	NIVO	nivolumab	WCGC	World Congress on Gastrointestinal
	Questionnaire	NR	not reached	******	Cancer
ESMO	European Society for Medical Oncology	NS	non-significant	WT	wild type
FAS	full analysis set	ORR	overall/objective response rate	V V I	wiid type
FOLFIRI	folinic acid + 5-fluouracil + irinotecan	(m)OS	(median) overall survival		
FULFIKI	TOILLIG ACID + 3-HUUULACII + IIIIIOLECAN	(111)03	(Illeulail) Overall Survival		

Contents

Cancers of the oesophagus and stomach	6
Cancers of the pancreas, small bowel and hepatobiliary tract	<u>15</u>
Pancreatic cancer	<u>16</u>
Hepatocellular carcinoma	27
- Gall bladder	<u>46</u>
Cancers of the colon, rectum and anus	<u>52</u>
Gastrointestinal cancer	92
• GIST	96

CANCERS OF THE OESOPHAGUS AND STOMACH

O-11: Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-positive advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: A randomized, phase 2, multicenter, open-label study (DESTINY-Gastric01) – Yamaguchi K, et al


Study objective

 To evaluate the efficacy and safety of trastuzumab deruxtecan (T-Dxd) in patients with HER2-positive advanced gastric or GEJ adenocarcinoma

Key patient inclusion criteria

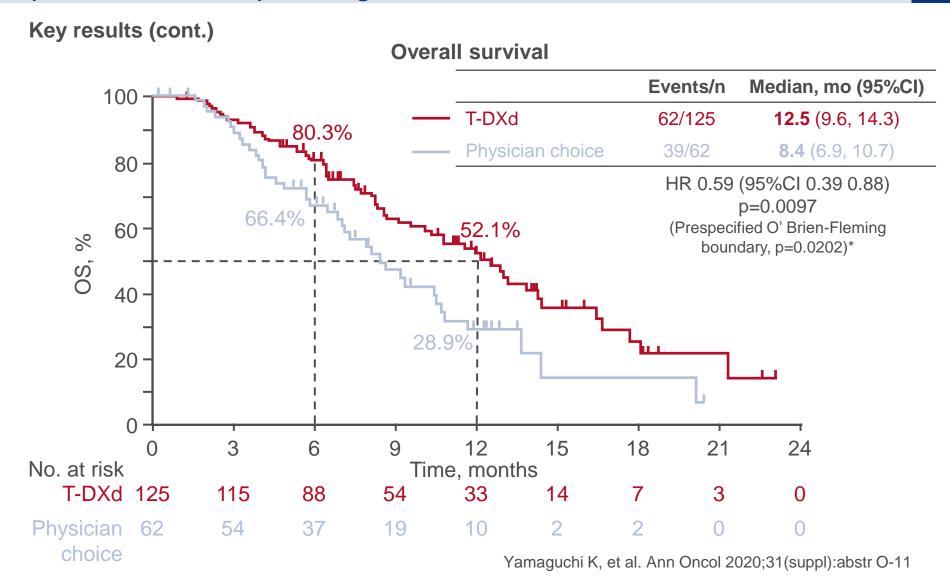
- Advanced gastric or GEJ adenocarcinoma
- HER2-positive (IHC3+ or IHC2+/ISH+)
- ≥2 prior regimens including a fluoropyrimidine and a platinum agent
- Progression on trastuzumabcontaining regimen

(n=743)

PRIMARY ENDPOINT

ORR (ICR)

SECONDARY ENDPOINTS


OS, PFS, safety

O-11: Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-positive advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: A randomized, phase 2, multicenter, open-label study (DESTINY-Gastric01) – Yamaguchi K, et al

Key results

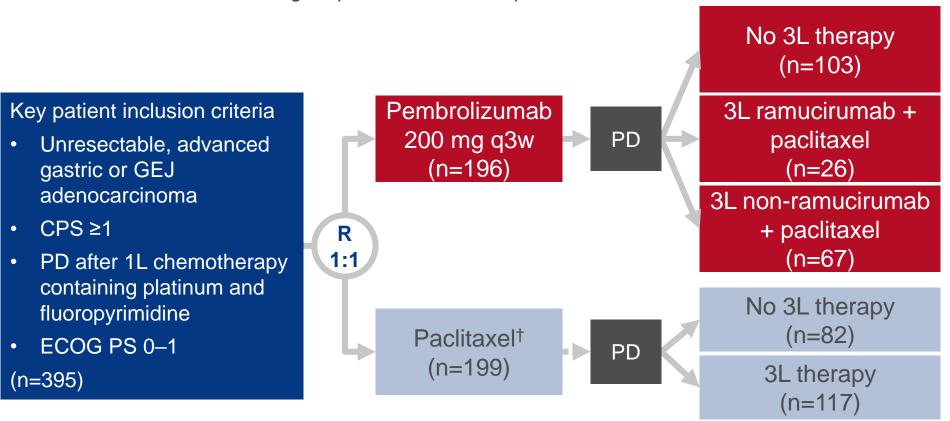
	T-Dxd (n=119)	Physician choice (n=56)
BOR, % CR PR SD PD NE	8.4 34.5 42.9 11.8 2.5	0 12.5 50.0 30.4 7.1
ORR by ICR, % (95%CI); p-value	51.3 (41.9, 60.5); <0.0001	14.3 (6.4, 26.3)
Confirmed ORR by ICR, % (95%CI)	42.9 (33.8, 52.3)	12.5 (5.2, 24.1)
Confirmed DCR, % (95%CI)	85.7 (78.1, 91.5)	62.5 (48.5, 75.1)
Confirmed median DoR, months (95%CI)	11.3 (5.6, NE)	3.9 (3.0, 4.9)

O-11: Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-positive advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: A randomized, phase 2, multicenter, open-label study (DESTINY-Gastric01) – Yamaguchi K, et al

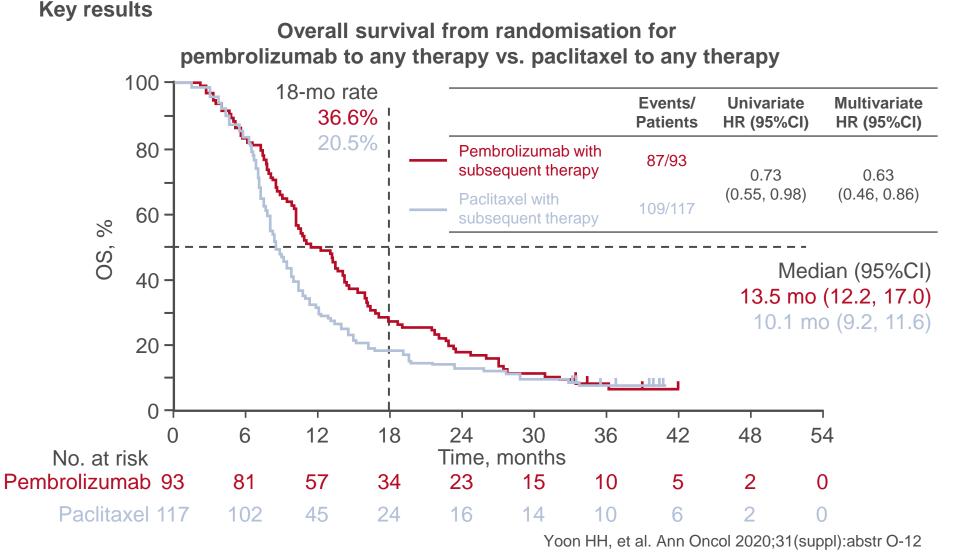
O-11: Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-positive advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: A randomized, phase 2, multicenter, open-label study (DESTINY-Gastric01) – Yamaguchi K, et al

O-11: Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-positive advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: A randomized, phase 2, multicenter, open-label study (DESTINY-Gastric01) – Yamaguchi K, et al

Key results (cont.)


TEAEs, n (%)	T-Dxd (n=125)	Physician choice (n=62)
Any	125 (100)	61 (98.4)
Grade ≥3	107 (85.6)	35 (56.5)
Serious	55 (44.0)	15 (24.2)
Leading to discontinuation	19 (15.2)	4 (6.5)
Leading to dose reduction	40 (32.0)	21 (33.9)
Leading to dose interruption	78 (62.4)	23 (37.1)
Leading to death	8 (6.4)	2 (3.2)

Conclusions


 In patients with HER2-positive gastric or GEJ adenocarcinoma, T-Dxd demonstrated improvements in responses and survival compared with standard chemotherapy and was generally well-tolerated O-12: KEYNOTE-061: response to subsequent therapy following secondline pembrolizumab or paclitaxel in patients with advanced gastric or gastroesophageal junction adenocarcinoma – Yoon HH, et al

Study objective

 To evaluate responses to subsequent therapy in patients with advanced gastric or GEJ adenocarcinoma following 2L pembrolizumab or paclitaxel

O-12: KEYNOTE-061: response to subsequent therapy following secondline pembrolizumab or paclitaxel in patients with advanced gastric or gastroesophageal junction adenocarcinoma – Yoon HH, et al

O-12: KEYNOTE-061: response to subsequent therapy following secondline pembrolizumab or paclitaxel in patients with advanced gastric or gastroesophageal junction adenocarcinoma – Yoon HH, et al

Key results (cont.)

OC from roudomination		Median, mo	HR (95%CI)		
OS from randomisation	Events/n	(95%CI)	Univariate	Multivariate	
Pembrolizumab without subsequent therapy Paclitaxel without subsequent therapy	89/103 81/82	3.2 (2.4, 4.8) 4.2 (3.3, 5.2)	0.84 (0.61, 1.16)	-	
Pembrolizumab with subsequent RAM + paclitaxel Paclitaxel with any subsequent therapy	25/26 109/117	13.1 (10.4, 17.0) 10.1 (9.2, 11.6)	0.70 (0.44, 1.11)	0.61 (0.37, 1.00)	
Pembrolizumab with subsequent RAM + paclitaxel Paclitaxel with any multi-agent regimen	25/26 46/38	13.1 (10.4, 17.0) 10.3 (8.9, 12.8)	0.67 (0.39, 1.15)	0.46 (0.25, 0.85)	
Pembrolizumab with subsequent RAM + paclitaxel Pembrolizumab with subsequent non-RAM + paclitaxel	25/26 62/67	13.1 (10.4, 17.0) 14.7 (11.3, 19.0)	0.89 (0.49, 1.59)	0.85 (0.46, 1.58)	
OS from start of subsequent therapy					
Pembrolizumab with subsequent RAM + paclitaxel Pembrolizumab with subsequent non-RAM + paclitaxel	25/26 62/67	9.0 (6.5, 12.5) 8.0 (4.3, 10.5)	0.98 (0.54, 1.78)*	0.69 (0.36, 1.33)*	
Paclitaxel with any subsequent therapy	109/117	6.0 (5.3, 6.7)	0.78 (0.49, 1.23)†	0.67 (0.41, 1.11)†	

Conclusions

In patients with advanced gastric or GEJ adenocarcinoma, pembrolizumab appears
to potentiate subsequent therapy and when combined with an anti-VEGF/VEGFR
and a taxane there potentially may be a greater antitumor effect, although these data
require confirmation in further studies

Pembrolizumab with subsequent RAM + paclitaxel vs.

^{*}pembrolizumab with subsequent non-RAM + paclitaxel or

[†]paclitaxel with any subsequent therapy

CANCERS OF THE PANCREAS, SMALL BOWEL AND HEPATOBILIARY TRACT

Cancers of the pancreas, small bowel and hepatobiliary tract

PANCREATIC CANCER

LBA-1: First-line liposomal irinotecan + 5 fluorouracil/leucovorin + oxaliplatin in patients with pancreatic ductal adenocarcinoma: primary analysis from a phase 1/2 study – Wainberg ZA, et al

Study objective

To evaluate the efficacy and safety of 1L liposomal irinotecan + 5FU/leucovorin + oxaliplatin (NALIRIFOX) in patients with PDAC

Key patient inclusion criteria

- Unresectable, locally advanced or metastatic PDAC
- Diagnosis ≤6 weeks prior to screening
- KPS ≥70*
- ECOG PS 0–1

(n=31)

Cohort A (70/60): liposomal irinotecan 70 mg/m² + 5FU/LV[†] + oxaliplatin 60 mg/m² q2w (n=7)

Cohort B (50/60): liposomal irinotecan 50 mg/m² + 5FU/LV[†] + oxaliplatin 60 mg/m² q2w (n=7)

Cohort C (50/85): liposomal irinotecan 50 mg/m² + 5FU/LV[†] + oxaliplatin 85 mg/m² q2w (n=10)

Cohort D (55/70): liposomal irinotecan 55 mg/m² + 5FU/LV[†] + oxaliplatin 70 mg/m² q2w (n=7)

Dose expansion
NALIRIFOX
(50/60):
liposomal
irinotecan
50 mg/m² +
5FU/LV +
oxaliplatin
60 mg/m² q2w
(n=25)

PRIMARY ENDPOINTS

Safety, DLTs

*Dose expansion cohort only; $^{\dagger}5FU$ 2400 mg/m² and LV 400 mg/m²

SECONDARY ENDPOINTS

 PFS, OS, ORR, DCR at 16 weeks, DoR, genomic profiling

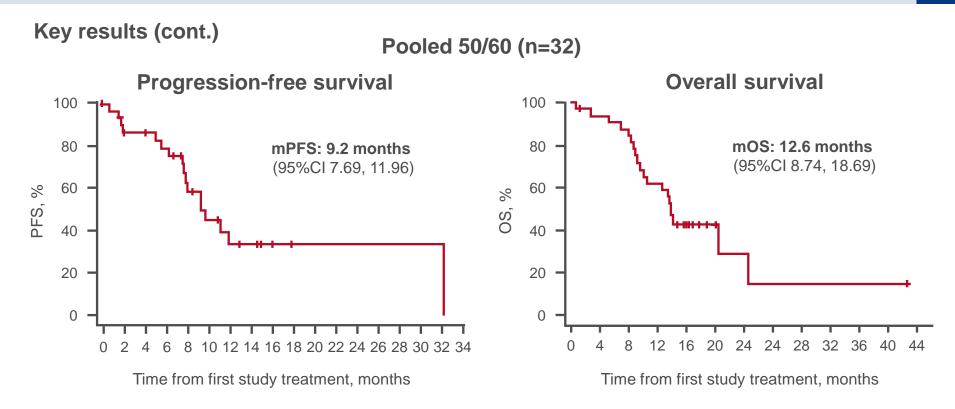
Wainberg ZA, et al. Ann Oncol 2020;31(suppl):abstr LBA-1

This talk was presented at the 22nd ESMO WCGC on 1 July 2020 at 14:15

LBA-1: First-line liposomal irinotecan + 5 fluorouracil/leucovorin + oxaliplatin in patients with pancreatic ductal adenocarcinoma: primary analysis from a phase 1/2 study – Wainberg ZA, et al

Key results

	Dose exploration cohorts				Dose expansion	Pooled
AEs, n (%)	A (70/60) (n=7)	B (50/60) (n=7)	C (50/85) (n=10)	D (55/70) (n=7)	(50/60) (n=25)	(50/60) (n=32)
TEAEs leading to						
Dose interruption	5 (71.4)	1 (14.3)	3 (30.0)	3 (42.9)	7 (28.0)	8 (25.0)
Dose adjustment	2 (28.6)	4 (57.1)	7 (70.0)	4 (57.1)	22 (88.0)	26 (81.3)
Death	0	1 (14.3)	1 (10.0)	1 (14.3)	2 (8.0)	3 (9.4)
Grade ≥3 TRAEs*	6 (85.7)	4 (57.1)	8 (80.0)	5 (71.4)	18 (72.0)	22 (68.8)
Neutropenia	1 (14.3)	2 (28.6)	3 (30.0)	1 (14.3)	8 (32.0)	10 (31.3)
Febrile neutropenia	0	1 (14.3)	0	0	3 (12.0)	4 (12.5)
Hypokalemia	1 (14.3)	2 (28.6)	2 (20.0)	2 (28.6)	2 (8.0)	4 (12.5)
Neutrophil count decreased	0	0	1 (10.0)	0	3 (12.0)	3 (9.4)
Diarrhoea	3 (42.9)	1 (14.3)	4 (40.0)	1 (14.3)	2 (8.0)	3 (9.4)
Nausea	0	0	2 (20.0)	0	3 (12.0)	3 (9.4)
Anaemia	0	1 (14.3)	0	0	1 (4.0)	2 (6.3)
Vomiting	1 (14.3)	0	3 (30.0)	0	2 (8.0)	2 (6.3)
Hyponatremia	0	0	0	0	2 (8.0)	2 (6.3)
ALT increased	0	0	0	0	2 (8.0)	2 (6.3)
GGT increased	0	0	0	0	2 (8.0)	2 (6.3)
Lymphocyte count decreased	0	0	0	0	2 (8.0)	2 (6.3)
WBC count decreased	0	0	0	0	2 (8.0)	2 (6.3)


^{*≥5%} of patients in pooled 50/60 population

LBA-1: First-line liposomal irinotecan + 5 fluorouracil/leucovorin + oxaliplatin in patients with pancreatic ductal adenocarcinoma: primary analysis from a phase 1/2 study – Wainberg ZA, et al

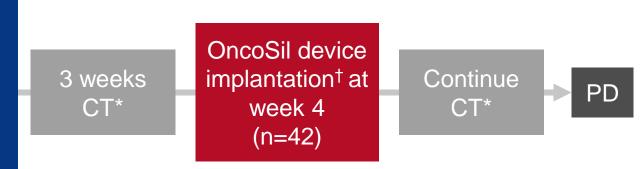
Key results (cont.)

		Dose explora	Dose	Pooled		
Response	A (70/60) (n=7)	B (50/60) (n=7)	C (50/85) (n=10)	D (55/70) (n=7)	expansion (50/60) (n=25)	(50/60) (n=32)
BOR, n (%)						
CR	0	0	0	0	1 (4.0)	1 (3.1)
PR	0	3 (42.9)	3 (30.0)	1 (14.3)	7 (28.0)	10 (31.3)
SD	2 (28.6)	3 (42.9)	1 (10.0)	3 (42.9)	12 (48.0)	15 (46.9)
PD	1 (14.3)	0	2 (20.0)	1 (14.3)	3 (12.0)	3 (9.4)
Non-PD/non-CR	1 (14.3)	0	0	0	0	0
NE	3 (42.9)	1 (14.3)	4 (40.0)	2 (28.6)	2 (8.0)	3 (9.4)
ORR, % (95%CI)	0 (0, 41.0)	42.9 (9.9, 81.6)	30.0 (6.7, 65.2)	14.3 (0.4, 57.9)	32.0 (14.9, 53.5)	34.4 (18.6, 53.2)
DCR at 16 week, % (95%CI)	42.9 (9.9, 81.6)	71.4 (29.0, 96.3)	40.0 (12.2, 73.8)	28.6 (3.7, 71.0)	72.0 (50.6, 87.9)	71.9 (53.3, 86.3)
DoR	(n=0)	(n=3)	(n=3)	(n=1)	(n=8)	(n=11)
Median, mo (95%CI)	NE (NE, NE)	28.4 (3.52, NE)	NE (NE, 16.39)	NE (NE, NE)	9.4 (2.2, NE)	9.4 (3.52, NE)
Rate at, % (95%CI)						
6 months	NE	66.7 (9.4, 99.2)	100 (29.2, 100)	0 (0, 97.5)	62.5 (24.5, 91.5)	63.6 (30.8, 89.1)
12 months	NE	33.3 (0.8, 90.6)	100 (29.2, 100)	0 (0, 97.5)	25.0 (3.2, 65.1)	27.3 (6.0, 61.0)
24 months	NE	33.3 (0.8, 90.6)	0 (0, 70.8)	0 (0, 97.5)	0 (0, 36.9)	9.1 (0.2, 41.3)

LBA-1: First-line liposomal irinotecan + 5 fluorouracil/leucovorin + oxaliplatin in patients with pancreatic ductal adenocarcinoma: primary analysis from a phase 1/2 study – Wainberg ZA, et al

Conclusions

 In patients with PDAC, 1L NALIRIFOX was generally well-tolerated and showed encouraging antitumor activity O-1: PanCO: Updated results of an open-label, single-arm pilot study of OncoSil phosphorus-32 microparticles in unresectable locally advanced pancreatic adenocarcinoma with gemcitabine + nab-paclitaxel or FOLFIRINOX chemotherapy – Ross P, et al


Study objective

To evaluate the efficacy and safety of OncoSil phosphorus-32 microparticles with gemcitabine
 + nab-paclitaxel or FOLFIRINOX in patients with unresectable locally advanced PDAC

Key patient inclusion criteria

- Unresectable locally advanced pancreatic adenocarcinoma
- No prior radiotherapy or CT for PDAC
- Target tumour diameter2–6 cm
- ECOG PS 0–1

(n=50)

PRIMARY ENDPOINT

Safety

SECONDARY ENDPOINT

Local DCR at 16 weeks

Ross P, et al. Ann Oncol 2020;31(suppl):abstr O-1

^{*}FOLIRINOX 14-day cycles or gemcitabine + nab-paclitaxel 28-day cycles; †32P activity calculated from tumour volume to deliver 100 Gy

O-1: PanCO: Updated results of an open-label, single-arm pilot study of OncoSil phosphorus-32 microparticles in unresectable locally advanced pancreatic adenocarcinoma with gemcitabine + nab-paclitaxel or FOLFIRINOX chemotherapy – Ross P, et al

Key results

AEs occurring in ≥20% of	AEs related	AEs related to OncoSil		chemotherapy
patients, n (%)	All grade	Grade ≥3	All grade	Grade ≥3
Any	16 (38.1)	3 (7.1)	42 (100)	28 (66.7)
Diarrhoea	-	-	22 (52.4)	1 (2.4)
Nausea	3 (7.1)	-	23 (54.8)	2 (4.8)
Abdominal pain	3(7.1)	1 (2.4)	5 (11.9)	1 (2.4)
Constipation	-	-	10 (23.8)	-
Vomiting	-	-	10 (23.8)	1 (2.4)
Fatigue	5 (11.9)	1 (2.4)	34 (81.0)	5 (11.9)
Pyrexia	-	-	10 (23.8)	2 (4.8)
Peripheral oedema	-	-	8 (19.0)	-
Neutropenia	2 (4.8)	1 (2.4)	21 (50.0)	16 (38.1)
Thrombocytopenia	1 (2.4)	1 (2.4)	12 (28.6)	3 (7.1)
Anaemia	1 (2.4)	-	12 (28.6)	5 (11.9)
Alopecia	-	-	16 (38.1)	-
Rash	-	-	13 (31.0)	-
Appetite decreased	-	-	16 (38.1)	-
Peripheral neuropathy	-	-	15 (35.7)	1 (2.4)
Weight decreased	1 (2.4)	0	10 (23.8)	1 (2.4)

• 33% of AEs occurred pre-OncoSil vs. 67% post-implant, with 6% vs. 94% attributed to the OncoSil device and/or implantation procedure vs. chemotherapy

Ross P, et al. Ann Oncol 2020;31(suppl):abstr O-1

O-1: PanCO: Updated results of an open-label, single-arm pilot study of OncoSil phosphorus-32 microparticles in unresectable locally advanced pancreatic adenocarcinoma with gemcitabine + nab-paclitaxel or FOLFIRINOX chemotherapy – Ross P, et al

Key results (cont.)

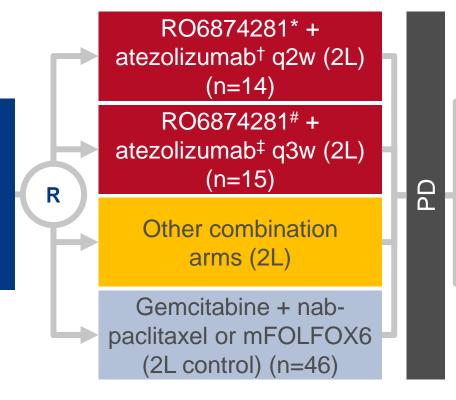
Response	OncoSil (n=42)
BOR, n (%)	
CR	0 (0)
PR	13 (31.0)
SD	29 (69.0)
PD	0
ORR, n (%)	13 (31.0)
mPFS, mo (95%CI)	9.3 (7.2, 12.2)
PFS at 12 mo, % (95%CI)	32.3 (20.4, 51.3)
mOS, mo (95%CI)	16.0 (11.1, NE)
OS at 12 mo, % (95%CI)	64.0 (47.5, 76.5)

	OncoSil implantation (n=42)
DCR, n (%) [95%CI]	42 (100) [91.6, 100]
Local DCR at 16 weeks, n (%) [95%CI] p-value	38 (90.5) [77, 97] <0.0001
Local DCR at 24 weeks, n (%) [95%CI]	30 (71.4) [55, 84]
Surgical resection, n (%) R0 vs. R1	10 (23.8) 8 (80) vs. 2 (20)

Conclusions

 In patients with unresectable locally advanced PDAC, implantation with OncoSil device was feasible, well-tolerated and provided clinical benefit in combination with systemic chemotherapy

SO-4: Phase Ib/II, open-label, randomised evaluation of atezolizumab plus RO6874281 vs control in MORPHEUS-pancreatic ductal adenocarcinoma (PDAC) – Chung V, et al


Study objective

 To evaluate the efficacy and safety of RO6874281 + atezolizumab in patients with metastatic PDAC

Key patient inclusion criteria

- Metastatic PDAC
- Progression after 1L 5FU- or gemcitabine-based CT in metastatic setting

(n=75)

RO6874281 + atezolizumab[¥] (3L)

Other combination

ENDPOINTS

ORR, PFS, OS, safety

*10 mg iv D1, 15 mg iv D8, 15, 22 of cycle 1 then 15 mg D1, 15 each 28-day cycle; †840 mg iv in 28-day cycle; #10 mg iv in 21-day cycle; †1200 mg iv in 21-day cycle; *patients receiving 2L RO6874281 + atezolizumab not eligible to continue it in 3L

Chung V, et al. Ann Oncol 2020;31(suppl):abstr SO-4

SO-4: Phase Ib/II, open-label, randomised evaluation of atezolizumab plus RO6874281 vs control in MORPHEUS-pancreatic ductal adenocarcinoma (PDAC) – Chung V, et al

Key results

	RO6874281 + atezolizumab q2w (2L) (n=14)	RO6874281 + atezolizumab q3w (2L) (n=15)	Control (2L) (n=46)	RO6874281 + atezolizumab q3w* (3L) (n=6)
BOR, n (%) [95%CI] CR PR SD PD NE	0 (0) [0, 23.2] 1 (7.1) [0.2, 33.9] 2 (14.3) [1.8, 42.8] 11 (78.6) [49.2, 95.3] 0	0 (0) [0, 21.8] 0 (0) [0, 21.8] 2 (13.3) [1.7, 40.5] 10 (66.7) [38.4, 88.2] 3 (20.0)	0 (0) [0, 7.7] 1 (2.2) [0.1, 11.5] 19 (41.3) [27.0, 56.8] 17 (37.0) [23.2, 52.5] 9 (19.6)	0 (0) [0, 45.9] 1 (16.7) [0.4, 64.1] 1 (16.7) [0.4, 64.1] 2 (33.3) [4.3, 77.7] 2 (33.3)
Confirmed ORR, n (%) [95%CI]	1 (7.1) [0.2, 33.9]	0 (0) [0, 21.8]	1 (2.2) [0.1, 11.5]	1 (16.7) [0.4, 64.1]
DCR, n (%) [95%CI]	1 (7.1) [0.2, 33.9]	0 (0) [0, 21.8]	15 (32.6) [19.5, 48.0]	2 (33.3) [4.3, 77.7]
mPFS, mo (95%CI)	1.5 (1.3, 1.6)	1.4 (1.4, 2.7)	2.5 (1.6, 4.1)	1.7 (1.4, 4.7)
mOS, mo (95%CI)	7.3 (4.9, 9,7)	4.7 (3.8, 11.0)	7.0 (6.3, 9.6)	6.8 (1.9, NE)
Median duration of survival follow-up, mo (range)	6.6 (1.9–11.8)	4.4 (1.4–13.0)	6.6 (0.3–17.9)	4.4 (1.5–12.2)

^{*}One patient received q2w regimen

SO-4: Phase Ib/II, open-label, randomised evaluation of atezolizumab plus RO6874281 vs control in MORPHEUS-pancreatic ductal adenocarcinoma (PDAC) – Chung V, et al

Key results (cont.)

AEs, n (%)	RO6874281 + atezolizumab q2w (2L) (n=14)	RO6874281 + atezolizumab q3w (2L) (n=15)	Control (2L) (n=46)	RO6874281 + atezolizumab q3w* (3L) (n=6)
≥1 AE TRAE	14 (100) 13 (92.9)	15 (100) 13 (86.7)	45 (97.8) 40 (87.0)	6 (100) 5 (83.3)
Grade 3/4 AEs	7 (50.0)	8 (53.3)	28 (60.9)	6 (100)
Grade 5 AEs	0	0	1 (2.2)	0
SAE Treatment-related Leading to dose modification/interruption Leading to withdrawal from treatment	1 (7.1) 0 3 (21.4) 0	7 (46.7) 5 (33.3) 0 0	22 (47.8) 7 (15.2) 29 (63.0) 1 (2.2)	1 (16.7) 0 0 0

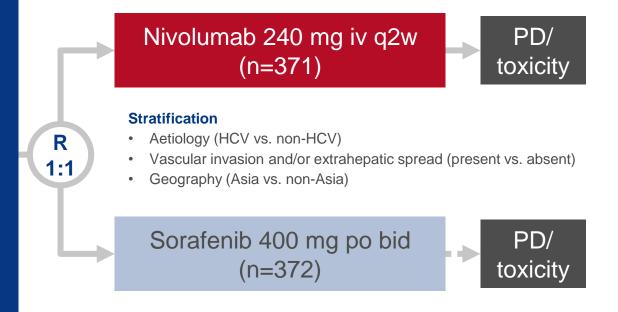
Conclusions

• In patients with metastatic PDAC, RO6874281 + atezolizumab demonstrated limited responses compared with 2L chemotherapy, although was generally well-tolerated

Cancers of the pancreas, small bowel and hepatobiliary tract

HEPATOCELLULAR CARCINOMA

LBA-3: CheckMate 459: long-term efficacy outcomes with nivolumab versus sorafenib as first-line treatment in patients with advanced hepatocellular carcinoma – Sangro B, et al


Study objective

 To evaluate the long-term efficacy and safety of nivolumab as a 1L treatment for patients with advanced HCC

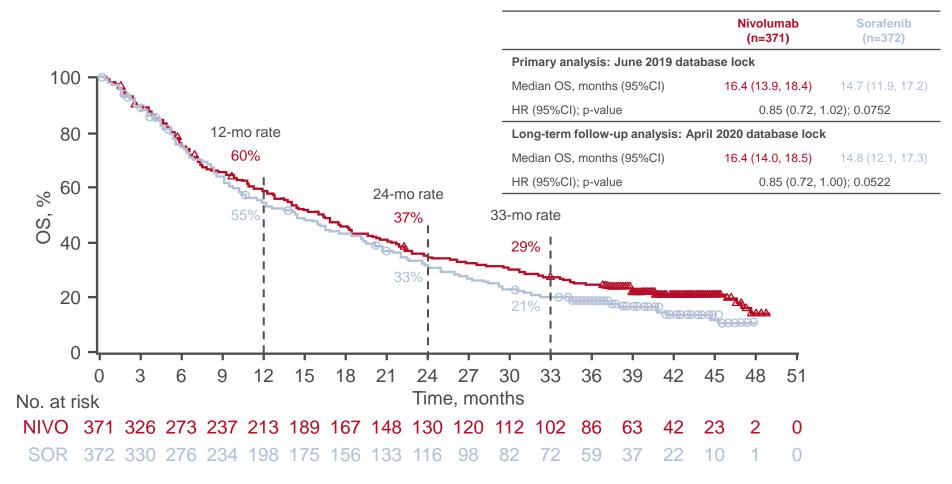
Key patient inclusion criteria

- Advanced HCC
- Ineligible for surgery and/or for loco-regional therapy or PD after surgery and/or loco-regional therapy
- Child-Pugh class A
- Systemic therapy naïve
- ECOG PS 0–1

(n=743)

PRIMARY ENDPOINT

OS


SECONDARY ENDPOINTS

ORR, PFS, efficacy by PD-L1 status, safety

LBA-3: CheckMate 459: long-term efficacy outcomes with nivolumab versus sorafenib as first-line treatment in patients with advanced hepatocellular carcinoma – Sangro B, et al

Key results

Overall survival

LBA-3: CheckMate 459: long-term efficacy outcomes with nivolumab versus sorafenib as first-line treatment in patients with advanced hepatocellular carcinoma – Sangro B, et al

Key results (cont.)

No. at risk

Overall survival by PD-L1 expression

Tumour-cell PD-L1 expression ≥1% Tumour-cell PD-L1 expression <1% **Nivolumab** Sorafenib **Nivolumab** Sorafenib (n=71)(n=64)(n=295)(n=300)Median OS, mo (95%CI) 16.1 (8.4, 22.3) Median OS, mo (95%CI) 16.7 (13.9, 19.4) 15.2 (12.7, 18.1) 8.6 (5.7, 16.3) HR (95%CI) 0.80 (0.54, 1.17) HR (95%CI) 0.84 (0.70, 1.01) 100 100 80 80 % 60-60 OS, 40-20 20-

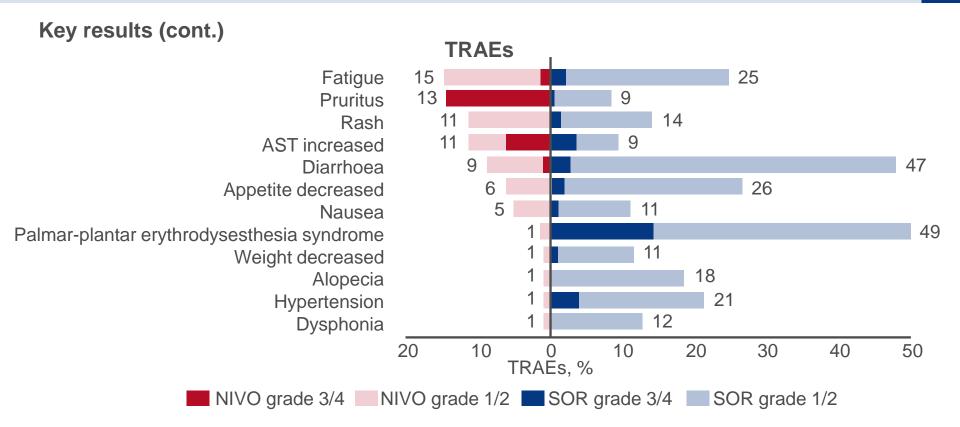
NIVO 71 64 53 43 41 38 32 29 25 24 23 20 16 12 8 0 295 257 216 190 169 148 133 117 104 95 88 81 69 50 34 23 SOR 64 53 37 29 28 25 23 22 20 17 15 14 13 12 7 0 300 271 233 199 165 145 128 106 93 78 65 56 45 25 15 10

12 15 18 21 24 27 30 33 36 39 42 45

Time, months

Time, months

12 15 18 21 24 27 30 33 36 39 42 45 48 51


LBA-3: CheckMate 459: long-term efficacy outcomes with nivolumab versus sorafenib as first-line treatment in patients with advanced hepatocellular carcinoma – Sangro B, et al

Key results (cont.)

HCVa Uninfected **HBV**a **Nivolumab Nivolumab Nivolumab** Sorafenib (n=87)(n=86)(n=116) (n=117)(n=168)(n=168)Median OS, Median OS. Median OS. 17.5 (13.9, 21.9) 16.1 (12.5, 21.3) 10.4 (8.5, 17.3) 16.0 (10.8, 20.2) 17.4 (13.7, 21.3) mo (95%CI) mo (95%CI) mo (95%CI) HR (95%CI) 0.72 (0.51, 1.02) HR (95%CI) 0.79 (0.59, 1.07) HR (95%CI) 0.91 (0.72, 1.16) 100 100 100 80 80 80 % OS, OS, 40 20 20 12 15 18 21 24 27 30 33 36 39 42 45 48 51 12 15 18 21 24 27 30 33 36 39 42 45 48 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 No. at risk Time, months Time, months Time, months NIVO 87 77 67 58 53 48 40 34 29 27 26 25 20 13 8 116 106 86 72 68 56 51 46 42 37 36 33 31 21 14 168143120107 92 85 76 68 59 56 50 44 35 29 20 10 SOR 87 74 61 54 43 34 30 25 22 18 17 17 14 7 5 2 117101 77 63 53 50 45 37 33 29 27 24 21 17 8 168154137116101 90 80 70 60 50 37 30 23 13 9 4

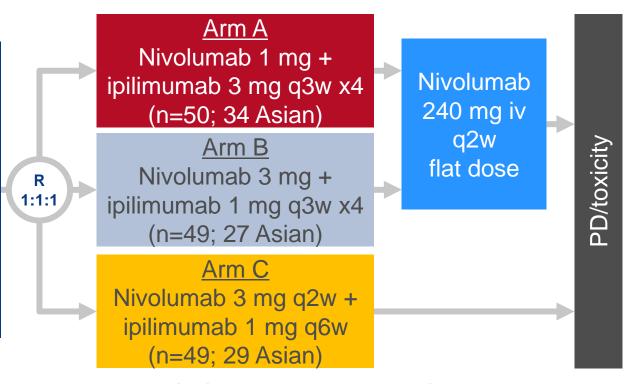
Overall survival by aetiology

LBA-3: CheckMate 459: long-term efficacy outcomes with nivolumab versus sorafenib as first-line treatment in patients with advanced hepatocellular carcinoma – Sangro B, et al

Conclusions

 In patients with advanced HCC, 1L nivolumab continued to demonstrate improvements in OS regardless of PD-L1 status or viral aetiology and had a manageable safety profile

O-5: Efficacy and safety of nivolumab + ipilimumab in Asian patients with advanced hepatocellular carcinoma: subanalysis of the CheckMate 040 study – Yao T, et al


Study objective

 To evaluate the efficacy and safety of nivolumab + ipilimumab in Asian patients with advanced HCC

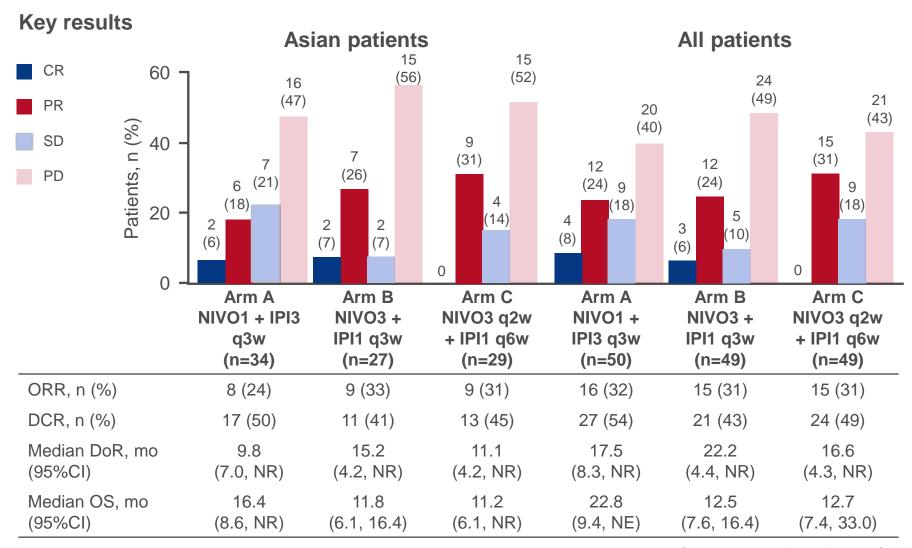
Key patient inclusion criteria

- Advanced HCC
- Sorafenib naïve or progression after or intolerant to sorafenib
- Child-Pugh A5 or A6
- HBV, HCV or non-viral HCC
- ECOG PS 0-1

(n=71)

PRIMARY ENDPOINTS

Safety, ORR (RECIST v1.1, investigator assessed), DoR


SECONDARY ENDPOINTS

DCR, TTR, TTP, PFS, OS

Yao T, et al. Ann Oncol 2020;31(suppl):abstr O-5

This talk was presented at the 22nd ESMO WCGC on 1 July 2020 at 18:29

O-5: Efficacy and safety of nivolumab + ipilimumab in Asian patients with advanced hepatocellular carcinoma: subanalysis of the CheckMate 040 study – Yao T, et al

O-5: Efficacy and safety of nivolumab + ipilimumab in Asian patients with advanced hepatocellular carcinoma: subanalysis of the CheckMate 040 study – Yao T, et al

Key results (cont.)

	Asian patients			All patients		
Grade 3/4 TRAEs, n (%)	Arm A NIVO1 + IPI3 q3w (n=33)	Arm B NIVO3 + IPI1 q3w (n=27)	Arm C NIVO3 q2w + IPI1 q6w (n=29)	Arm A NIVO1 + IPI3 q3w (n=49)	Arm B NIVO3 + IPI1 q3w (n=49)	Arm C NIVO3 q2w + IPI1 q6w (n=48)
Any	17 (52)	7 (26)	8 (28)	26 (53)	14 (29)	15 (31)
Pruritus	1 (3)	0	0	2 (4)	0	0
Rash	1 (3)	1 (4)	0	2 (4)	2 (4)	0
Diarrhoea	1 (3)	0	0	2 (4)	1 (2)	1 (2)
AST increased	5 (15)	3 (11)	2 (7)	8 (16)	4 (8)	2 (4)
Fatigue	0	0	0	1 (2)	0	0
ALT increased	3 (9)	2 (7)	0	4 (8)	3 (6)	0

Conclusions

- In Asian patients with advanced HCC, nivolumab + ipilimumab demonstrated clinically meaningful responses, particularly in the nivolumab 1 + ipilimumab 3 arm
- The safety profile was manageable with no new safety signals observed

O-8: Atezolizumab + bevacizumab vs sorafenib for unresectable hepatocellular carcinoma (HCC): Results from older adults enrolled in IMbrave150 – Li D, et al

R

Study objective

 To evaluate the efficacy and safety of atezolizumab + bevacizumab in older patients with unresectable HCC

Key patient inclusion criteria

- Locally advanced or metastatic and/or unresectable HCC
- Child-Pugh class A
- No prior systemic therapy
- ECOG PS 0–1 (n=501)

Atezolizumab 1200 mg D1 + bevacizumab 15 mg/kg D1 q3w (n=336)

Stratification

- Region (Asia, excluding Japan* vs. rest of world)
- ECOG PS (0 vs. 1)
- Macrovascular invasion and/or extrahepatic spread (presence vs. absence)
- Baseline AFP (<400 vs. ≥400 ng/mL)

Sorafenib 400 mg bid D1–21 q3w (n=165)

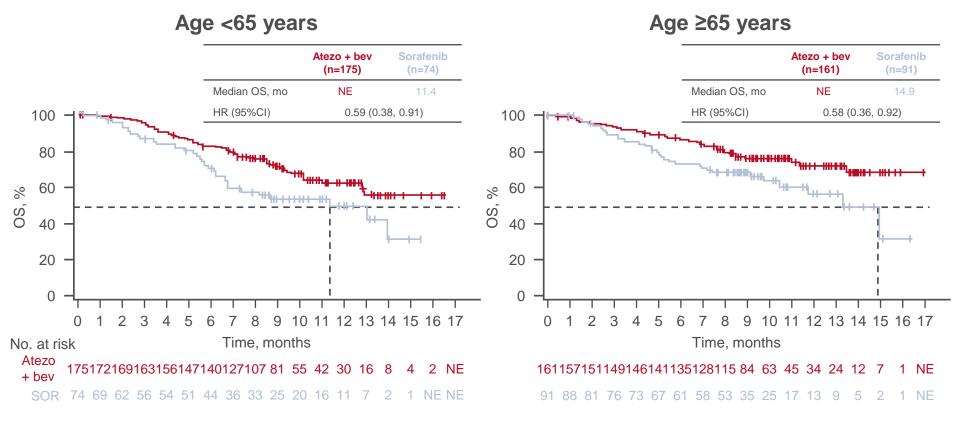
CO-PRIMARY ENDPOINTS†

OS, PFS (RECIST v1.1)

*Japan is included in rest of world; †data previously presented at ESMO 2019

SECONDARY ENDPOINTS

 PROs (TTD of QoL, physical and role functioning EORTC QLQ-C30 and EORTC QLQ-HCC18)


Li D, et al. Ann Oncol 2020;31(suppl):abstr O-8

This talk was presented at the 22nd ESMO WCGC on 1 July 2020 at 18:50

O-8: Atezolizumab + bevacizumab vs sorafenib for unresectable hepatocellular carcinoma (HCC): Results from older adults enrolled in IMbrave150 – Li D, et al

Key results

Overall survival

O-8: Atezolizumab + bevacizumab vs sorafenib for unresectable hepatocellular carcinoma (HCC): Results from older adults enrolled in IMbrave150 – Li D, et al

Key results (cont.)

AEs occurring in ≥15% of patients treated with atezolizumab + bevacizumab, n (%)	<65 years (n=171)	≥65 years (n=158)
Hypertension	47 (27)	51 (32)
Fatigue	24 (14)	43 (27)
Diarrhoea	28 (16)	34 (22)
Appetite decreased	26 (15)	32 (20)
Pyrexia	29 (17)	30 (19)
Pruritus	35 (20)	29 (18)
Proteinuria	39 (23)	27 (17)
AST increased	39 (23)	25 (16)

Conclusions

• In older patients (≥65 years) with unresectable HCC, atezolizumab + bevacizumab demonstrated clinically meaningful benefits with no significant additional toxicities

SO-6: The influence of liver function on the outcomes of phase II trial of sorafenib vs. hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma – Kobayashi S, et al

Study objective

 To evaluate the efficacy and safety of hepatic arterial infusion chemotherapy (HAIC) + sorafenib according to liver function* in patients with advanced HCC

Key patient inclusion criteria

- Advanced HCC
- Child-Pugh score 5–7
- No prior systemic chemotherapy
- ECOG PS 0-1 (n=68)

HAIC[†] followed by sorafenib 400 mg bid (n=35)

Stratification

- Institute
- Presence of MVI
- Presence of EHS

Sorafenib 400 mg bid (n=33)

PD/

intolerant

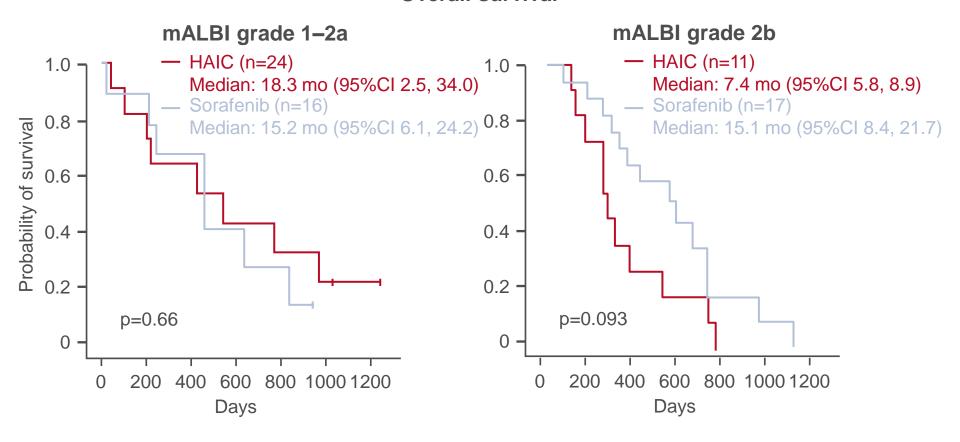
PRIMARY ENDPOINT

1-year survival

SECONDARY ENDPOINTS

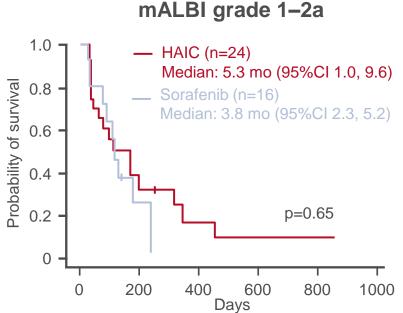
OS, 2-year survival, TTP, ORR, DCR, safety

*Defined using modified ALBI score, grade 1 ≤-2.60, grade 2a >-2.60 to ≤-2.27 and grade 2b >-2.27 to ≤-1.39; †cisplatin 65 mg/m² ia every 4–6 weeks

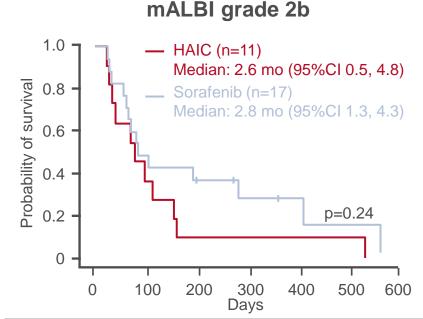

Kobayashi S, et al. Ann Oncol 2020;31(suppl):abstr SO-6

This talk was presented at the 22nd ESMO WCGC on 1 July 2020 at 19:12

SO-6: The influence of liver function on the outcomes of phase II trial of sorafenib vs. hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma – Kobayashi S, et al


Key results

Overall survival



SO-6: The influence of liver function on the outcomes of phase II trial of sorafenib vs. hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma – Kobayashi S, et al

Time-to-progression and 2L treatment

	•	
2L treatment, n (%)	Sorafenib (n=16)	HAIC (n=24)
Sorafenib	0	17 (71)
HAIC	11 (69)	0
Others	2 (12)	4 (17)
BSC	3 (19)	3 (13)

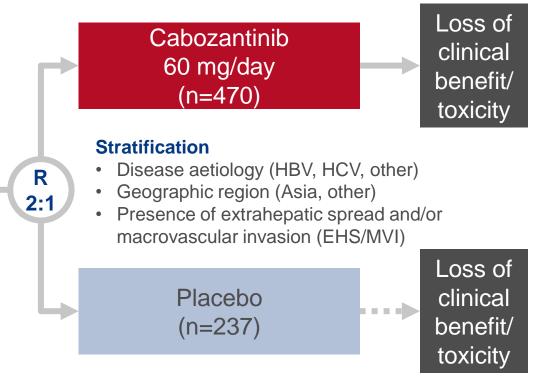
2L treatment, n (%)	Sorafenib (n=17)	HAIC (n=11)
Sorafenib	0	7 (64)
HAIC	7 (41)	0
Others	6 (35)	1 (9)
BSC	4 (24)	3 (27)

SO-6: The influence of liver function on the outcomes of phase II trial of sorafenib vs. hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma – Kobayashi S, et al

Conclusions

 In patients with advanced HCC and mALBI grade 2b, sorafenib demonstrated better OS than HAIC followed by sorafenib, however, OS was comparable between the two treatment arms in those with mALBI grade 1–2a

SO-9: Outcomes for patients with advanced hepatocellular carcinoma (HCC) and Child-Pugh B liver function in the phase 3 CELESTIAL study of cabozantinib vs placebo – El-Khoueiry A, et al


Study objective

 To evaluate the efficacy and safety of cabozantinib in the subgroup of patients with advanced HCC whose liver function had deteriorated to Child-Pugh B by Week 8

Key patient inclusion criteria

- Advanced HCC
- Child-Pugh score A
- Received prior sorafenib
- Progressed after ≥1 prior systemic treatment for HCC
- Received ≤2 prior systemic regimens for advanced HCC
- ECOG PS 0–1

(n=707)

PRIMARY ENDPOINT

OS

SECONDARY ENDPOINTS

PFS, ORR, safety

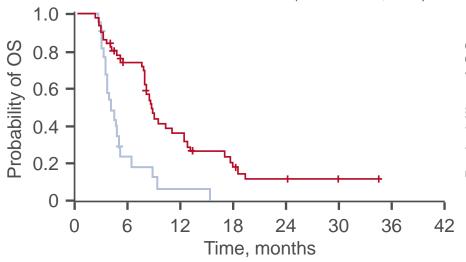
El-Khoueiry A, et al. Ann Oncol 2020;31(suppl):abstr SO-9

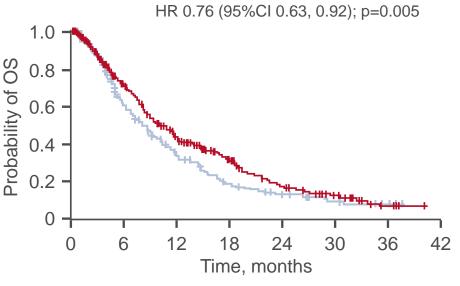
This talk was presented at the 22nd ESMO WCGC on 1 July 2020 at 19:32

SO-9: Outcomes for patients with advanced hepatocellular carcinoma (HCC) and Child-Pugh B liver function in the phase 3 CELESTIAL study of cabozantinib vs placebo – El-Khoueiry A, et al

Key results

Overall survival


Child-Pugh	B subgroup
------------	------------


	Median OS, mo (95%CI)	No. of deaths
Cabozantinib (n=51)	8.5 (7.7, 12.2)	37
Placebo (n=22)	3.8 (3.3, 4.8)	20

Overall

	Median OS, mo (95%CI)	No. of deaths
Cabozantinib (n=470)	10.2 (9.1, 12.0)	317
Placebo (n=237)	8.0 (6.8, 9.4)	167

HR 0.32 (95%CI 0.18, 0.58)

SO-9: Outcomes for patients with advanced hepatocellular carcinoma (HCC) and Child-Pugh B liver function in the phase 3 CELESTIAL study of cabozantinib vs placebo – El-Khoueiry A, et al

Key results (cont.)

Grade 3/4 AEs, %	Child-Pugh B subgroup (n=51)	Overall population (n=467)
Any	71	68
Fatigue	20	10
Ascites	14	4
AST increased	14	12
Thrombocytopenia	12	3
Palmar-plantar erythrodysesthesia	8	17
Hypertension	8	16

Conclusions

 In patients with advanced HCC and Child-Pugh B liver function by Week 8, cabozantinib demonstrated similar outcomes to those of the overall population and had a manageable safety profile

Cancers of the pancreas, small bowel and hepatobiliary tract

GALL BLADDER

LBA-2: Two arm randomized prospective superiority phase II multicentric clinical trial to evaluate the efficacy of capecitabine-irinotecan (CAPIRI) versus irinotecan in advanced gall bladder cancer progressing on first line chemotherapy – Ramaswamy A, et al

Study objective

 To evaluate the efficacy and safety of capecitabine-irinotecan (CAPIRI) in patients with gall bladder cancer who had progressed on 1L chemotherapy

> R 1:1

Key patient inclusion criteria

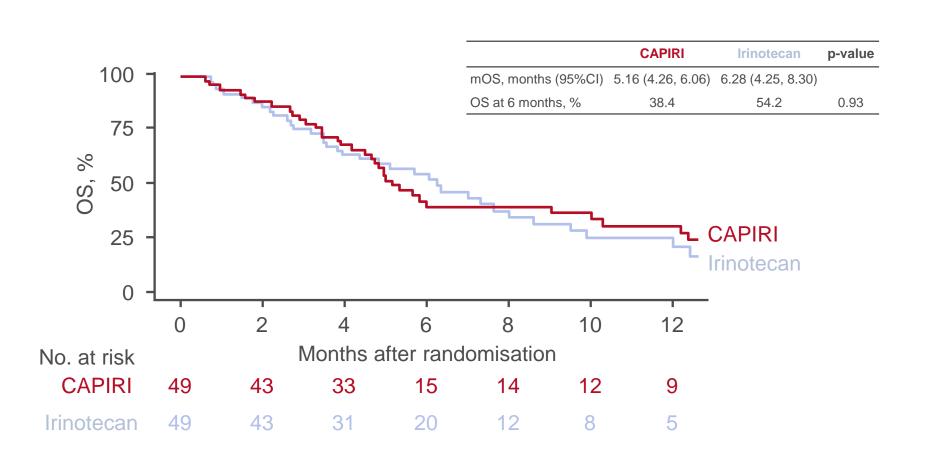
- Stage IV or recurrent gall bladder cancer
- Previous 1L treatment with gemcitabine-based regimen (n=98)

CAPIRI: Capecitabine 1700 mg/m²/day d1–14 + irinotecan 200 mg/m² q3w (n=49)

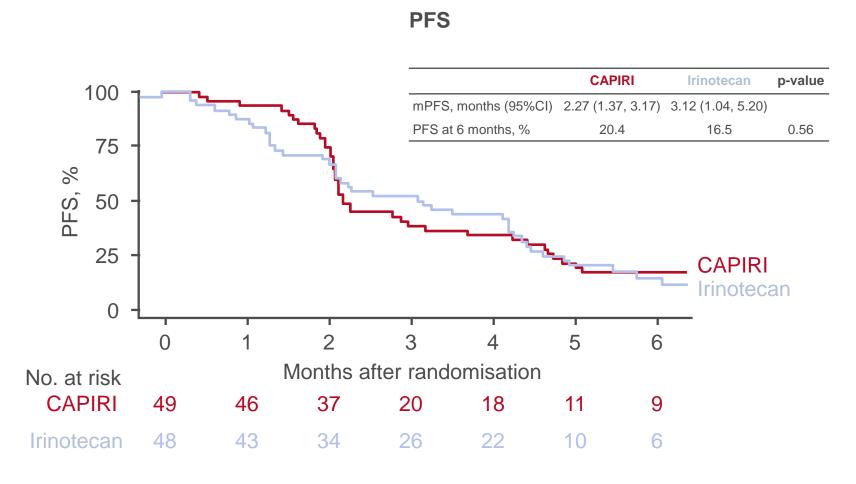
Irinotecan 240 mg/m² q3w (n=49)

PRIMARY ENDPOINT

OS at 6 months


SECONDARY ENDPOINTS

PFS at 6 months, RR, QoL, safety


LBA-2: Two arm randomized prospective superiority phase II multicentric clinical trial to evaluate the efficacy of capecitabine-irinotecan (CAPIRI) versus irinotecan in advanced gall bladder cancer progressing on first line chemotherapy – Ramaswamy A, et al

OS

Key results

LBA-2: Two arm randomized prospective superiority phase II multicentric clinical trial to evaluate the efficacy of capecitabine-irinotecan (CAPIRI) versus irinotecan in advanced gall bladder cancer progressing on first line chemotherapy – Ramaswamy A, et al

LBA-2: Two arm randomized prospective superiority phase II multicentric clinical trial to evaluate the efficacy of capecitabine-irinotecan (CAPIRI) versus irinotecan in advanced gall bladder cancer progressing on first line chemotherapy – Ramaswamy A, et al

	CAPIRI (n=49)	Irinotecan (n=49)
BOR, n (%)		
CR	2 (4)	0
PR	1 (2)	0
SD	17 (35)	23 (47)
RR, n (%)	3 (6)	0
CBR, n (%)	20 (41)	23 (47)
Number of cycles, mean	3	4
Continued on treatment, n (%)	6 (12)	6 (12)

- QoL: no difference in delta HEP scores F(1, 21) = 0.805; p=0.38
- Higher rate of dose modifications with CAPIRI (27%) vs. irinotecan (9%); p=0.03

LBA-2: Two arm randomized prospective superiority phase II multicentric clinical trial to evaluate the efficacy of capecitabine-irinotecan (CAPIRI) versus irinotecan in advanced gall bladder cancer progressing on first line chemotherapy – Ramaswamy A, et al

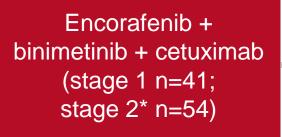
Grade 3/4 AEs, n (%)	CAPIRI (n=49)	Irinotecan (n=49)
Fatigue	10 (20)	7 (14)
Diarrhoea	8 (16)	5 (10)
Constipation	4 (8)	2 (4)
Nausea/vomiting	2 (4)	4 (8)
Hyponatremia	2 (4)	3 (6)
Hematological Anaemia Febrile neutropenia Thrombocytopenia Neutropenia	2 (4) 2 (4) 2 (4) 1 (2)	2 (4) 0 2 (4) 4 (8)

Conclusions

 In patients with advanced gall bladder cancer with progression on 1L chemotherapy, clinical benefit was similar between CAPIRI and irinotecan monotherapy; however, there was an increase in dose modifications and AEs with the combination therapy

CANCERS OF THE COLON, RECTUM AND ANUS

LBA-5: ANCHOR CRC: a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E-mutant metastatic colorectal cancer – Grothey A, et al


Study objective

 To evaluate the efficacy and safety of encorafenib + binimetinib + cetuximab as a 1L treatment for patients with BRAF V600E-mutant mCRC

Key patient inclusion criteria

- mCRC with BRAF V600E mutation
- Untreated in metastatic setting
- No prior RAF, MEK or EGFR inhibitors
- ECOG PS 0-1

(n=95)

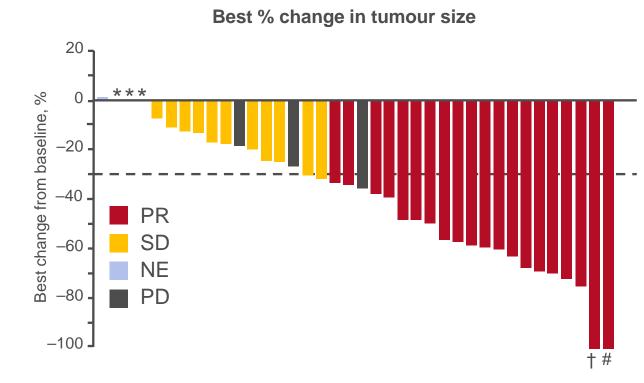
PD/ toxicity/ withdrawal

PRIMARY ENDPOINT

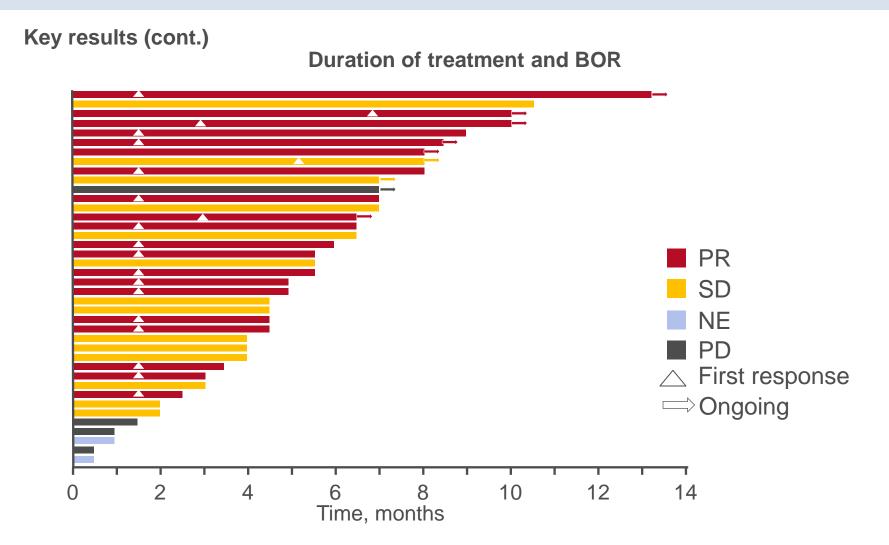
ORR (investigator assessed)

SECONDARY ENDPOINTS

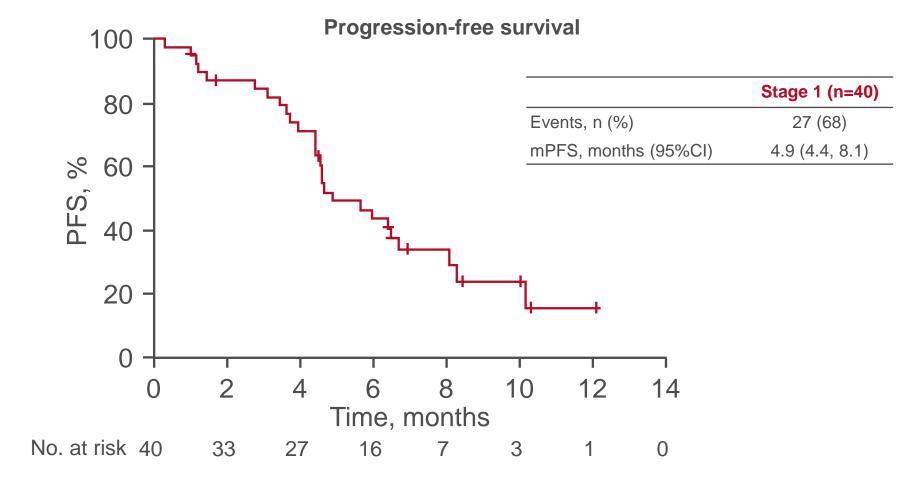
PFS, OS, PK, QoL, safety


Grothey A, et al. Ann Oncol 2020;31(suppl):abstr LBA-5

^{*}Enrolment after ≥12 responses occurred in stage 1


LBA-5: ANCHOR CRC: a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E-mutant metastatic colorectal cancer – Grothey A, et al

Key results


	Stage 1 (n=40)
BOR, n (%)	
CR	0
PR	20 (50)
SD	14 (35)
PD	4 (10)
NE	2 (5)
ORR, n (%) [95%CI]	20 (50) [34, 66]
DCR, n (%)	34 (85)

LBA-5: ANCHOR CRC: a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E-mutant metastatic colorectal cancer – Grothey A, et al

LBA-5: ANCHOR CRC: a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E-mutant metastatic colorectal cancer – Grothey A, et al

LBA-5: ANCHOR CRC: a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E-mutant metastatic colorectal cancer – Grothey A, et al

Key results (cont.)

AEc n (9/)	Stage 1 (n=41)	
AEs, n (%)	Any grade	Grade ≥3
Any	41 (100)	28 (68)
SAEs	23 (56)	20 (49)
Leading to dose modification	28 (68)	18 (44)
Leading to discontinuation	8 (20)	7 (17)
Leading to death	3 (7)	3 (7)

Grade ≥3 AEs, n (%)	Stage 1 (n=41)
Diarrhoea	6 (15)
Anaemia	5 (12)
Acute kidney injury	5 (12)
Nausea	3 (7)
Abdominal pain	2 (5)
Asthenia	1 (2)
Vomiting	1 (2)
Acneiform dermatitis	1 (2)
Appetite decreased	1 (2)

Conclusions

 In patients with BRAF V600E-mutant mCRC, 1L treatment with encorafenib + binimetinib + cetuximab demonstrated clinical activity and was well-tolerated LBA-6: Safety, feasibility, tolerability, and preliminary efficacy of perioperative systemic therapy for resectable colorectal peritoneal metastases: pilot phase of a randomised trial (CAIRO6) – Rovers K, et al.

Study objective

 To evaluate the efficacy and safety of perioperative systemic therapy in patients with resectable colorectal peritoneal metastases

R

Key patient inclusion criteria

- Resectable non-appendiceal colorectal adenocarcinoma
- Peritoneal metastases
- No extra-peritoneal metastases
- No systemic therapy in prior 6 months
- No previous cytoreductive surgery with HIPEC (n=79)

Perioperative systemic therapy (investigator choice)* (n=37)

Cytoreductive surgery with HIPEC (n=42)

ENDPOINTS

 No. of patients with complete cytoreductive surgery with HIPEC, no. of patients with Clavien-Dindo grade 3–5 postoperative morbidity, feasibility of trial accrual, safety

*4 neoadjuvant + adjuvant cycles of CAPOX (1st 3 neoadjuvant with bevacizumab); 6 neoadjuvant + adjuvant cycles of FOLFOX (1st 4 neoadjuvant with bevacizumab); or 6 neoadjuvant cycles of FOLFIRI + 4 or 6 adjuvant cycles of capecitabine or 5FU-leucovorin (1st 4 neoadjuvant cycles with bevacizumab)

Rovers K, et al. Ann Oncol 2020;31(suppl):abstr LBA-6

LBA-6: Safety, feasibility, tolerability, and preliminary efficacy of perioperative systemic therapy for resectable colorectal peritoneal metastases: pilot phase of a randomised trial (CAIRO6) – Rovers K, et al

Key results

Main outcome, n (%)	Perioperative systemic therapy (n=37)	Cytoreductive surgery with HIPEC (n=42)	p-value
No. of patients undergoing complete cytoreductive surgery with HIPEC	33 (89)	36 (86)	0.74
No. of patients with major postoperative morbidity	8 (22)	14 (33)	0.25
Surgery-related deaths	0	0	

Other outcomes, %	
Grade 3–5 systemic toxicity	35
Objective radiological response RECIST PCI	16 (non-evaluable 59) 28 (non-evaluable 0)
Major pathological regression TRG1–2 TRG1 (no residual cancer cells)	39 24

LBA-6: Safety, feasibility, tolerability, and preliminary efficacy of perioperative systemic therapy for resectable colorectal peritoneal metastases: pilot phase of a randomised trial (CAIRO6) – Rovers K, et al.

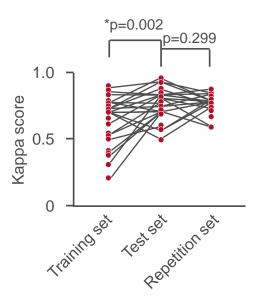
Conclusions

 In patients with resectable colorectal peritoneal metastases, perioperative systemic therapy seems to be feasible, safe and tolerated providing radiological and pathological tumour responses

SO-16: The tumour-stroma ratio as additional parameter to the TNM classification; the UNITED study – Mesker W, et al

Study objective

To evaluate the use of the tumour-stroma ratio (TSR) in addition to TNM classification

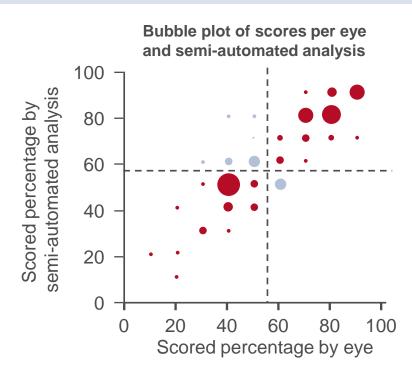

Methods

- The UNITED study was designed to prepare for the implementation of TSR in diagnostic pathology. The study assessed:
 - An e-learning module on TSR with quality assessment program (n=40)
 - TSR scored x2 on two occasions; repetition test after 1 year
 - Reliability and reproducibility of stained tumour tissues
 - Automation of scoring method
 - Validation in a prospective cohort of stage II-III colon cancer patients (recruiting and active; aim for 1500 patients)

SO-16: The tumour-stroma ratio as additional parameter to the TNM classification; the UNITED study – Mesker W, et al

Key results

- The e-learning module was passed by ~70% through auto-instruction and by ~90% through training
- Significant improvement from training to test set (p=0.002)
- No change from test to repetition set (p=0.299)

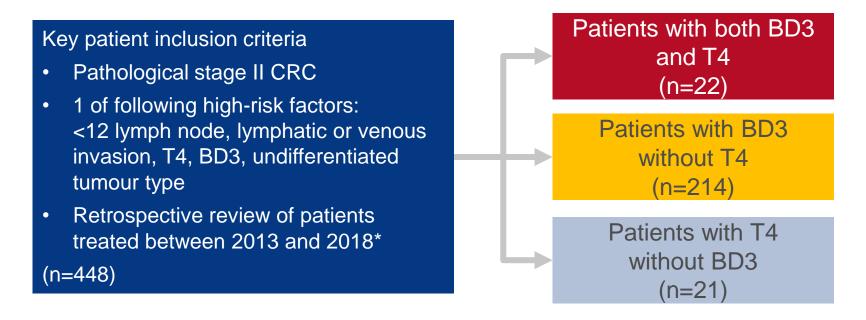


E-learning can be used to instruct pathologists for scoring TSR

SO-16: The tumour-stroma ratio as additional parameter to the TNM classification; the UNITED study – Mesker W, et al

Key results (cont.)

- Inter-correlation coefficient = 0.832
 - 95%CI 0.71, 0.90
- Semi-automated analysis could be helpful for pathologists when scoring TSR, for quantifying the exact stroma-percentage

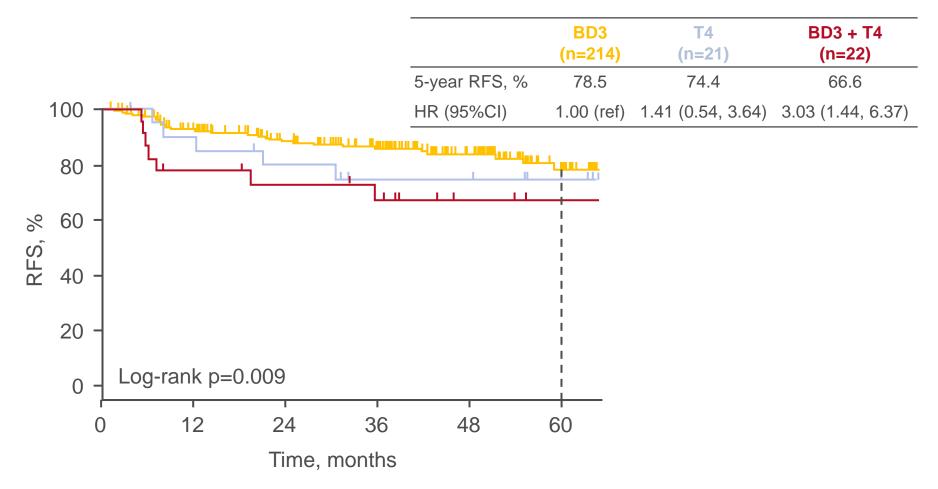

Conclusions

- The TSR scoring method is reproducible and easily learned through auto-instruction and short training
- Semi-automated analysis can be useful for quantifying exact stroma-percentage

SO-17: Association between tumor budding grade to T stage as prognostic value for recurrence with high-risk stage II colon cancer; a retrospective study – Kodama H, et al

Study objective

 To evaluate the prognostic and predictive value of the association between tumour budding grade (BD) and T stage for determining recurrence in patients with high-risk pathological stage II CRC



^{*}Initial analysis aimed to confirm the risk factors for recurrence in high-risk patients

SO-17: Association between tumor budding grade to T stage as prognostic value for recurrence with high-risk stage II colon cancer; a retrospective study – Kodama H, et al

Key results

Association between T4 and BD3 for RFS

SO-17: Association between tumor budding grade to T stage as prognostic value for recurrence with high-risk stage II colon cancer; a retrospective study – Kodama H, et al

Key results (cont.)

		Univariate analysis, HR (95%CI)	p-value	Multivariate analysis, HR (95%CI)	p-value
Number of lymph nodes	≥12 <12	1 1.63 (0.90, 2.98)	0.1054	1 2.00 (1.08, 3.72)	0.0272
Lymphatic or venous invasion	Negative Positive	1 1.36 (0.62, 2.98)	0.4417	1 1.67 (0.66, 4.24)	0.2778
T stage	T3 T4	1 2.41 (1.33, 4.35)	0.0036	1 2.87 (1.50, 5.50)	0.0014
Tumour BD	BD1 BD2 BD3	1 1.21 (0.52, 2.85) 1.64 (0.87, 3.06)	0.6522 0.1229	1 1.36 (0.55, 3.40) 2.06 (1.05, 4.02)	0.5033 0.0342
Adjuvant chemotherapy	Yes No	1 1.36 (0.71, 2.60)	0.351	1 1.07 (0.48, 2.38)	0.7643
Histology	Differentiated Undifferentiated	1 0.83 (0.30, 2.30)	0.7273	1 0.45 (0.12, 1.64)	0.2279

Conclusions

- In patients with stage II CRC, BD3, T4 and <12 lymph nodes were identified as independent risk factors that impacted RFS
- Presence of both BD3 and T4 indicated poor prognosis

O-20: Phase I/IB study of regorafenib and nivolumab in mismatch repair (MMR) proficient advanced refractory colorectal cancer – Kim R, et al

Study objective

 To evaluate the efficacy and safety of regorafenib + nivolumab in patients with pMMR advanced refractory CRC

Key patient inclusion criteria

- Refractory CRC
- pMMR
- Failed or intolerant of standard chemotherapy*
- No prior regorafenib

(n=28)

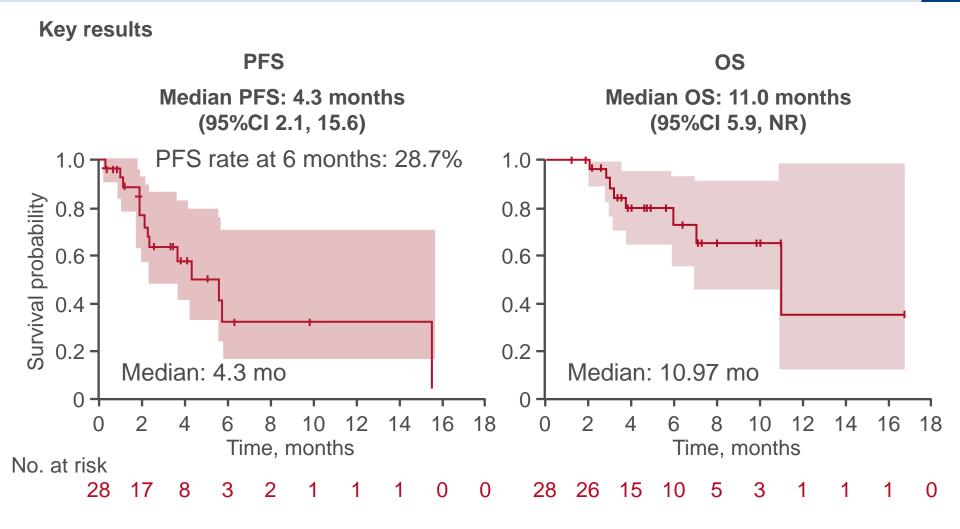
PRIMARY ENDPOINT

MTD

Dose escalation

Nivolumab 240 mg iv q2w +
regorafenib with
dose escalation 80 mg,
120 mg or 160 mg
(3-weeks on/1-week off)
(n=12)

Dose expansion


Nivolumab 240 mg iv q2w for 16 weeks then 480 mg q3w + regorafenib 80 mg (n=16)

SECONDARY ENDPOINTS

RR, PFS, OS, safety

^{*}Fluoropyrimidine, irinotecan, oxaliplatin or bevacizumab or if KRAS WT cetuximab or panitumumab containing regimens

O-20: Phase I/IB study of regorafenib and nivolumab in mismatch repair (MMR) proficient advanced refractory colorectal cancer – Kim R, et al

O-20: Phase I/IB study of regorafenib and nivolumab in mismatch repair (MMR) proficient advanced refractory colorectal cancer – Kim R, et al

Key results (cont.)

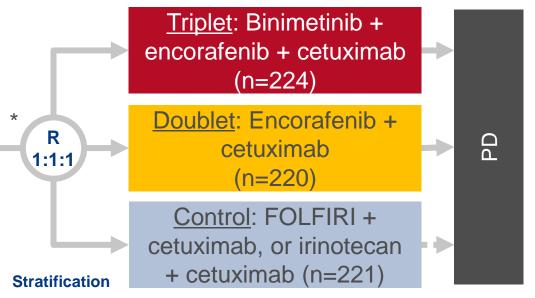
BOR, n (%)	n=21
PR (unconfirmed)	1 (4.8)
SD	14 (66.7)
DCR	15 (71.4)
PD	6 (28.6)

Grade ≥3 TRAEs, n (%)	All (n=28)
Rash	4 (14.3)
Fatigue	1 (3.6)
Palmar-plantar erythrodysesthesia	1 (3.6)
Hypertension	4 (14.3)
Hypophosphatemia	1 (3.6)
Lymphopenia	1 (3.6)
Anaemia	2 (7.1)

Conclusions

 In patients with pMMR advanced refractory CRC, nivolumab + regorafenib demonstrated some clinical activity and was generally well-tolerated

SO-21: Management of adverse events associated with encorafenib plus cetuximab in patients with BRAF V600E-mutant metastatic colorectal cancer (the BEACON CRC study) – Tabernero J, et al


Study objective

 To evaluate the management of AEs associated with encorafenib + cetuximab in patients with BRAF V600E-mutant mCRC

Key patient inclusion criteria

- BRAF V600E-mutant mCRC
- PD after 1 or 2 previous regimens
- No prior treatment with RAF, MEK or EGFR inhibitors
- Eligible for cetuximab
- ECOG PS 0-1

(n=665)

ECOG PS (0 vs. 1), prior irinotecan, cetuximab (US- vs. EU-approved)

CO-PRIMARY ENDPOINTS

OS, ORR (BICR)[†]

*Safety lead-in (n=30): binimetinib 45 mg bid + encorafenib 300 mg/day + cetuximab 400 mg/m² (initial) then 250 mg/m² qw; †data previously presented at ESMO WCGC 2019

SECONDARY ENDPOINTS

 OS and ORR (for doublet vs control and doublet vs triplet), PFS, QoL safety

Tabernero J, et al. Ann Oncol 2020;31(suppl):abstr SO-21

This talk was presented at the 22nd ESMO WCGC on 3 July 2020 at 14:59

SO-21: Management of adverse events associated with encorafenib plus cetuximab in patients with BRAF V600E-mutant metastatic colorectal cancer (the BEACON CRC study) – Tabernero J, et al

Key results

AEs of interest, %	Encorafenib + cetuximab (n=216)		Control (n=193)		Management of AFa of internal
	Any grade	Grade ≥3	Any grade	Grade ≥3	Management of AEs of interest
GI AEs					Diarrhoea: dietary modification (eat frequent small meals); reduce fibre
Diarrhoea	38	3	49	10	consumption; increase fluid intake; replace lost salt; consider treatment with loperamide
Nausea	38	<1	44	2	Nousea/veniting, avoid fried and aniquifooder, act amall and frequent mode.
Vomiting	27	1	32	3	Nausea/vomiting: avoid fried and spicy foods; eat small and frequent meals; eat lukewarm or cold foods; remain sitting up or standing within 1h after
Dose reductions due to GI AEs					eating; prevent dehydration; anti-emetics
Encorafenib	3	2	NA	NA	Encorafenib modification guidance
Cetuximab	0	0	2	1	 For recurrent grade 2 or first occurrence of any grade 3 or 4 AEs, permanently discontinue encorafenib (grade 4) or withhold encorafenib
Discontinuation due to GI AEs	4	3	5	3	for up to 4 weeks
Skins AEs					
Dermatitis acneiform	30	<1	40	3	Avoid sun exposure; consider referral to dermatologist and/or skin biopsy;
Melanocytic nevus	16	0	0	0	mild rash: use topical corticosteroids (e.g., mometasone cream) and/or topical antibiotic (e.g., erythromycin); moderate rash: use topical
Rash	15	0	15	2	erythromycin or clindamycin + topical mometasone or topical pimecrolimus + oral antibiotics; severe rash: consider oral prednisolone or oral isotretinoin
Dry skin	13	0	8	1	
Pruritus	11	0	5	0	Encorafenib modification guidance (other than hand-foot skin reaction) • For grade 2, if no improvement within 2 weeks, withhold encorafenib until
Dose reductions due to skin AEs					grade 0–1, resume at same dose
Encorafenib	1	0	NA	NA	 For grade 3, withhold encorafenib until grade 0–1, resume at same dose if first occurrence or reduce dose if recurrent:
Cetuximab	0	0	2	1	For grade 4, permanently discontinue encorafenib
Discontinuation due to skin AEs	0	0	2	1	

SO-21: Management of adverse events associated with encorafenib plus cetuximab in patients with BRAF V600E-mutant metastatic colorectal cancer (the BEACON CRC study) – Tabernero J, et al

Key results (cont.)

AEs of interest, %	Encorafenib + cetuximab (n=216)		Control (n=193)		Management of AFa of interest
ALS OF ITHEREST, 76	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Management of AEs of interest
Arthralgia	23	1	2	0	
Myalgia	15	<1	2	0	Advise patients to rest area with pain
Dose reductions					Recommend use of pain relieversConsider stretching
Encorafenib					Consider stretching
Arthralgia	1	<1	NA	NA	Encorafenib modification guidance
Myalgia	<1	0	NA	NA	 For recurrent grade 2 or first occurrence of any grade 3 or 4 AE, permanently discontinue encorafenib (grade 4) or withhold encorafenib
Cetuximab	0	0	0	0	for up to 4 weeks
Discontinuations	0	0	0	0	
Renal AEs					Maintain adequate fluid intake during treatment; advise patients to avoid all
UTI	8	2	3	1	nephrotoxic medications and maintain adequate hydration; ensure any concurrent urinary tract infections are promptly treated; evaluate patients for
Abnormal lab values					other causes of renal dysfunction and treat accordingly; seek nephrologist
Creatinine	54	3	38	1	consultation as required
Albumin	18	<1	24	0	Encorafenib modification guidance
Dose reductions due to renal AEs	0	0	0	0	 For recurrent grade 2 or first occurrence of any grade 3 or 4 AE, permanently discontinue encorafenib (grade 4) or withhold encorafenib
Discontinuation due to renal AEs	1	1	0	0	for up to 4 weeks

SO-21: Management of adverse events associated with encorafenib plus cetuximab in patients with BRAF V600E-mutant metastatic colorectal cancer (the BEACON CRC study) – Tabernero J, et al

Key results (cont.)

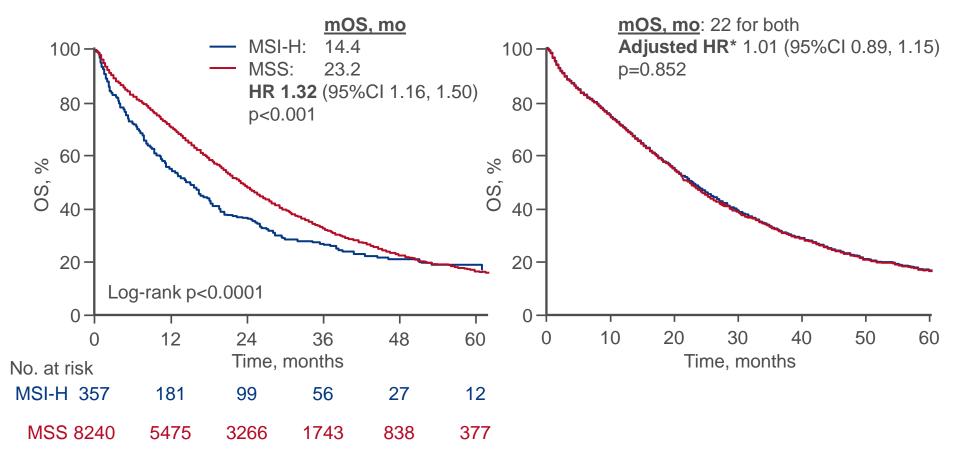
AEs of interest, %	Encorafenib + cetuximab (n=216)		Control (n=193)		Management of AEs of interest		
	Any Grade	Grade ≥3	Any Grade	Grade ≥3			
Other AEs							
Fatigue	33	4	28	5			
Asthenia	24	4	27	5			
Headache	20	0	3	0	 Advise patients to drink plenty of fluids, eat a healthy diet, exercise regularly if possible, and rest when 		
Pyrexia	19	1	15	1	needed		
Dose reductions					Recommend use of pain relievers to manage		
Encorafenib					symptoms as appropriate		
Fatigue	1	0	NA	NA	Encorafenib modification guidance		
Asthenia	1	<1	NA	NA	For recurrent grade 2 or first occurrence of any grade 3		
Cetuximab	0	0	0	0	or 4 AE, permanently discontinue encorafenib (grade 4) or withhold encorafenib for up to 4 weeks		
Discontinuations,					of withhold choofalchib for up to 4 weeks		
Fatigue	<1	<1	<1	0			
Asthenia	0	0	1	0			

Conclusions

 In patients with BRAF V600E-mutant mCRC, AEs reported with encorafenib + cetuximab were generally manageable through supportive care and practical approaches SO-23: Prognostic impact of microsatellite instability/mismatch repair deficiency on patients with stage III colon cancer and stage IV colorectal cancers (CRC): analysis of 42,984 Patients in the National Cancer Database (NCDB) – Salem M, et al

Study objective

 To evaluate the prognostic impact of MSI/dMMR on OS in patients with stage III colon cancer or stage IV CRC


Methods

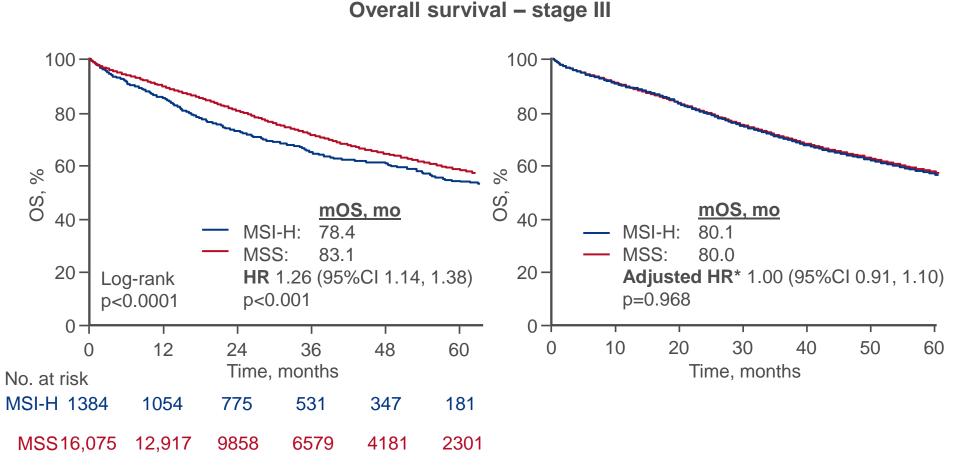
- Retrospective review of patients in the National Cancer Database diagnosed between 2004 and 2016
- 22,132 patients with stage III colon cancer included
 - 1704 with MSI-H
 - 20,428 with MSS
- 11,848 patients with stage IV CRC
 - 470 with MSI-H
 - 11,378 with MSS

SO-23: Prognostic impact of microsatellite instability/mismatch repair deficiency on patients with stage III colon cancer and stage IV colorectal cancers (CRC): analysis of 42,984 Patients in the National Cancer Database (NCDB) – Salem M, et al

Key results

^{*}Adjusted for tumour location, gender, race, treatment, tumour differentiation and insurance status

SO-23: Prognostic impact of microsatellite instability/mismatch repair deficiency on patients with stage III colon cancer and stage IV colorectal cancers (CRC): analysis of 42,984 Patients in the National Cancer Database (NCDB) – Salem M, et al


Key results (cont.)

Multivariable analysis of OS – stage IV

	Adjusted HR (95%CI)	p-value
Age at diagnosis	1.02 (1.01, 1.02)	<0.001
MSI-H status	1.01 (0.89, 1.15)	0.852
Poorly differentiated tumour grade	1.60 (1.50, 1.70)	<0.001
Right-sided tumour location	1.44 (1.36, 1.53)	<0.001
Insurance status None Gov	1.38 (1.08, 1.75) 1.23 (1.16, 1.31)	<0.001

SO-23: Prognostic impact of microsatellite instability/mismatch repair deficiency on patients with stage III colon cancer and stage IV colorectal cancers (CRC): analysis of 42,984 Patients in the National Cancer Database (NCDB) – Salem M, et al

Key results (cont.)

^{*}Adjusted for tumour location, gender, race, treatment, tumour differentiation and insurance status

SO-23: Prognostic impact of microsatellite instability/mismatch repair deficiency on patients with stage III colon cancer and stage IV colorectal cancers (CRC): analysis of 42,984 Patients in the National Cancer Database (NCDB) – Salem M, et al

Key results (cont.)

Multivariable analysis of OS – stage III

	Adjusted HR (95%CI)	p-value
Age at diagnosis	1.04 (1.03, 1.04)	<0.001
MSI-H status	1.00 (0.91, 1.10)	0.968
Poorly differentiated tumour grade	1.46 (1.37, 1.55)	<0.001
Right-sided tumour location	1.17 (1.10, 1.25)	<0.001
Insurance status None Gov	1.15 (0.86, 1.53) 1.31 (1.22, 1.41)	<0.001

Conclusions

 In patients with either stage III colon cancer or stage IV CRC, after adjusting for tumour location, gender, race, treatment, tumour differentiation and insurance status, MSI-H/dMMR status had no prognostic impact on OS

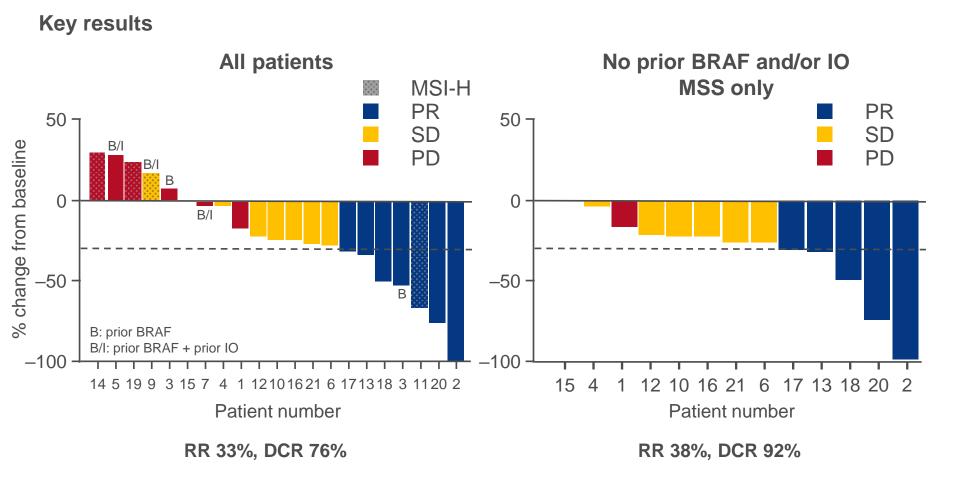
SO-26: Clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAF V600E colorectal cancer patients – Corcoran R, et al

Study objective

 To evaluate the efficacy and safety of combining BRAF (dabrafenib), MEK (trametinib) and PD-1 (spartalizumab) inhibitors in patients with BRAF V600E-mutant CRC

Key patient inclusion criteria

- BRAF V600E-mutant mCRC
- MSI or MSS (n=25)


Spartalizumab 400 mg iv q4w + dabrafenib 150 mg po bid + trametinib 2 mg/day po

ENDPOINTS

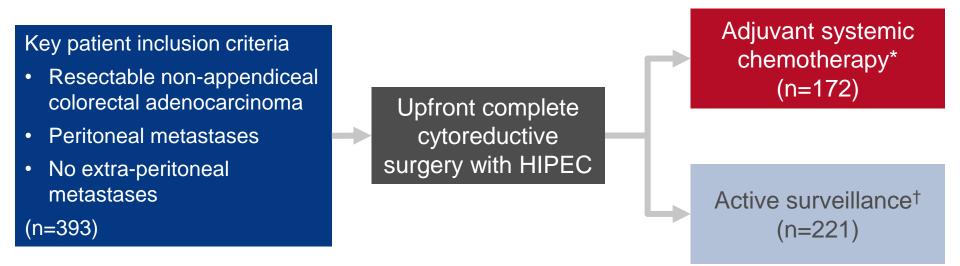
RR, DoR, safety

Trial amended after first 9 patients to exclude prior BRAF or MEK inhibitor or IO

SO-26: Clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAF V600E colorectal cancer patients – Corcoran R, et al

SO-26: Clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAF V600E colorectal cancer patients – Corcoran R, et al

Key results (cont.)


Grade ≥3 AEs, n (%)	
Lipase increased	3 (14.2)
Fever	2 (9.5)
Serum amylase increased	2 (9.5)
Fatigue	1 (4.7)
Hyponatremia	1 (4.7)
Anaemia	1 (4.7)
Maculopapular rash	1 (4.7)
Hypertension	1 (4.7)
Colitis	1 (4.7)
Hypokalemia	1 (4.7)

Conclusions

 In patients with BRAF V600E-mutant CRC, a triplet combination of spartalizumab, dabrafenib and trametinib demonstrated encouraging activity and was generally well-tolerated SO-30: Adjuvant systemic chemotherapy versus active surveillance following upfront resection of isolated synchronous colorectal peritoneal metastases: propensity score-matched analysis of a nationwide registry – Rovers K, et al

Study objective

 To evaluate the efficacy and safety of adjuvant systemic chemotherapy following upfront resection in patients with isolated synchronous colorectal peritoneal metastases

PRIMARY ENDPOINT

 OS in matched group (propensity score-matching included sex, age, location, TNM, histology – differentiation and hospital stay)

Rovers K, et al. Ann Oncol 2020;31(suppl):abstr SO-30

^{*}Started systemic chemotherapy without targeted therapy within 3 months postoperatively; †started systemic chemotherapy later than 3 months postoperatively or targeted therapy within 3 months postoperatively

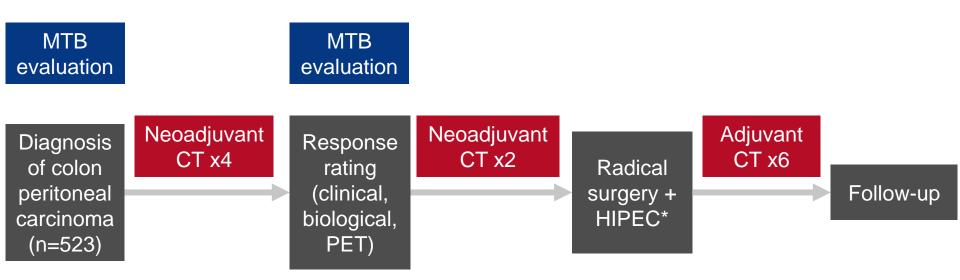
SO-30: Adjuvant systemic chemotherapy versus active surveillance following upfront resection of isolated synchronous colorectal peritoneal metastases: propensity score-matched analysis of a nationwide registry – Rovers K, et al

Key results

 Median OS: 38 months in adjuvant systemic chemotherapy group and 24 months in active surveillance group (HR 0.64, 95%CI 0.48, 0.86; p=0.003)

Adjustment	HR (95%CI); p-value
Patients who deceased between 3 and 6 months postoperatively	0.68 (0.50, 0.93); 0.02
Patients who received targeted therapy within 3 months postoperatively	0.68 (0.50, 0.93); 0.01
Patients who started systemic chemotherapy between 3 and 4 months postoperatively	0.65 (0.48, 0.87); 0.004
All of the above	0.70 (0.50, 0.97); 0.03

Conclusions


• In patients with isolated synchronous colorectal peritoneal metastases, adjuvant systemic chemotherapy after upfront resection was associated with improved OS

SO-31: Centralization of care leads to optimal selection and outcomes for patients with peritoneal metastases of colorectal cancer - the Catalonian regional program experience – Ramos M, et al

Study objective

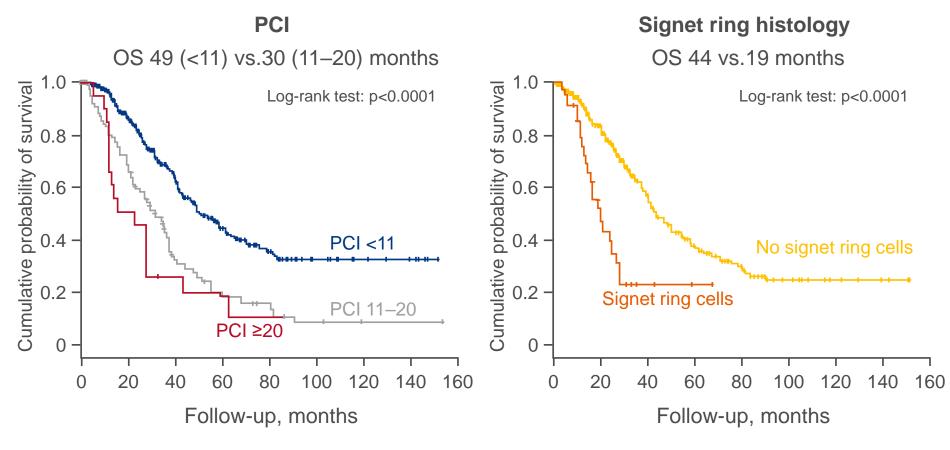
 To evaluate the centralisation of care on optimal selection and outcomes in patients with colorectal peritoneal metastases

Treatment plan



^{*}Oxaliplatin 460 mg/m² for 30 min at 43°C; irinotecan 400 mg/m² for 30 min at 43°C; MMC 30 mg/m² for 60 min at 42°C

SO-31: Centralization of care leads to optimal selection and outcomes for patients with peritoneal metastases of colorectal cancer - the Catalonian regional program experience – Ramos M, et al


Key results

Postoperative complication	itions, %
Grade 3/4	21.0
Urgent reoperation	6.3
30-day readmission	4.5
ICU readmission	3.5
Mortality	0.4

SO-31: Centralization of care leads to optimal selection and outcomes for patients with peritoneal metastases of colorectal cancer - the Catalonian regional program experience – Ramos M, et al

Key results (cont.)

SO-31: Centralization of care leads to optimal selection and outcomes for patients with peritoneal metastases of colorectal cancer - the Catalonian regional program experience – Ramos M, et al

Key results (cont.)

Clinical variable associated with survival	Univariate analysis p-value	Multivariate analysis p-value
Signet ring cell histology	<0.001	<0.001
AJCC staging at diagnosis		
Т	0.038	NS
N	0.001	0.024
M	0.01	NS
Presence of visceral involvement	<0.001	0.003
Presence of small bowel involvement	< 0.001	< 0.001
Synchronous vs. metachronous peritoneal metastases	0.015	NS
Use of preoperative chemotherapy	0.04	NS
Completion of cytoreductive score	<0.001	NS
Peritoneal cancer index	< 0.001	NS
Sidedness of primary colonic tumour	NS	-
KRAS status	NS	-
Age	NS	-
Gender	NS	-

Ramos M, et al. Ann Oncol 2020;31(suppl):abstr SO-31

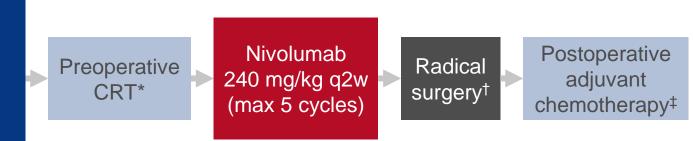
SO-31: Centralization of care leads to optimal selection and outcomes for patients with peritoneal metastases of colorectal cancer - the Catalonian regional program experience – Ramos M, et al

Key results (cont.)

Grade 3–5 AEs occurring in ≥2%, n (%)				
Hemoperitoneum	30 (5.7)			
Ileum	27 (5.1)			
Chemotherapy toxicity	25 (4.7)			
UTI/urinary sepsis	22 (4.2)			
Central line infection	17 (3.2)			

Conclusions

- In optimally selected patients with colorectal peritoneal metastases, radical surgery + HIPEC with systemic chemotherapy greatly improved survival outcomes and was associated with low postoperative morbidity and mortality
- Better survival was demonstrated in patients with N0 stage, absence of signet ring histology and absence of any visceral or small bowel involvement


SO-37: Short-term results of VOLTAGE-A: nivolumab monotherapy and subsequent radical surgery following preoperative chemoradiotherapy in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer (EPOC 1504) – Yuki S, et al

Study objective

 To evaluate the efficacy and safety of nivolumab followed by radical surgery after preoperative chemoradiotherapy in patients with MSS or MSI-H locally advanced rectal cancer

Key patient inclusion criteria

- Locally advanced resectable rectal cancer
- cT3-4, N any, M0
- Inferior margin ≤12 cm from anal verge
- Cohort A1: MSS (n=37)
- Cohort A2: MSI-H (n=5)

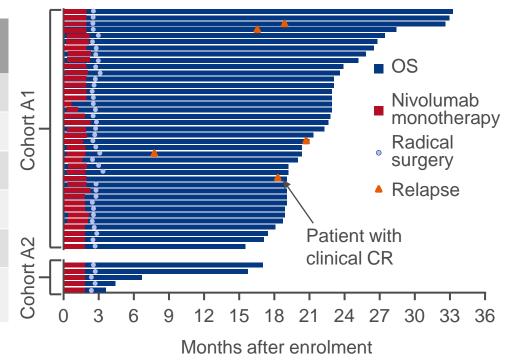
PRIMARY ENDPOINT

Pathological response

SECONDARY ENDPOINT

Safety

Yuki S, et al. Ann Oncol 2020;31(suppl):abstr SO-37


This talk was presented at the 22nd ESMO WCGC on 4 July 2020 at 13:47

^{*}Capecitabine 1650 mg/m² + 50.4 Gy; †total mesorectal excision or tumour specific mesorectal excision + bilateral lateral lymph node dissection if required; ‡FOLFOX or CAPOX

SO-37: Short-term results of VOLTAGE-A: nivolumab monotherapy and subsequent radical surgery following preoperative chemoradiotherapy in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer (EPOC 1504) – Yuki S, et al

Key results

AJCC grade, n (%)	Cohort A1 (MSS, n=37)	Cohort A2 (MSI-H, n=5)
0 (pCR)	11 (30)	3 (60)
1	3 (8)	0
2	15 (41)	2 (40)
3	7 (19)	0
NE	1 (3)	0
Neoadjuvant rectal score	8.4 (0, 50.4)	0.9 (0.9, 20.4)

SO-37: Short-term results of VOLTAGE-A: nivolumab monotherapy and subsequent radical surgery following preoperative chemoradiotherapy in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer (EPOC 1504) – Yuki S, et al

Key results (cont.)

Grade 3/4 AEs, n (%)	Cohort A1 (MSS, n=39)	Cohort A2 (MSI-H, n=5)
All nivolumab-related	4 (10.3)	0
AST elevation	2 (5.1)	0
All surgery-related	4 (10.5)	3 (60)
Pelvic abscess	4 (10.5)	1 (20)

Conclusions

 In patients with locally advanced MSS or MSI-H rectal cancer, nivolumab followed by radical surgery after preoperative chemoradiotherapy demonstrated encouraging pathological complete response rates and was generally well-tolerated

GASTROINTESTINAL CANCERS

O-3: Efficacy and safety of entrectinib in NTRK fusion-positive gastrointestinal cancers: updated integrated analysis of three clinical trials (STARTRK-2, STARTRK-1 and ALKA-372-001) – Patel M, et al

Study objective

 To evaluate the efficacy and safety entrectinib in patients with NTRK fusion-positive gastrointestinal cancers

Key patient inclusion criteria

- Solid tumours including GI cancers
- NTRK fusion-positive
- Data collected from 3 trials: ALKA-372-001, STARTRK-1, STARTRK-2

(Efficacy n=74; GI tumours n=12)

(Safety n=504; GI tumours n=16)

Entrectinib dose escalation (n=3, GI tumours, n=1) or entrectinib 600 mg/day q4w (n=71; GI tumours, n=11)

PRIMARY ENDPOINTS

ORR, DoR

SECONDARY ENDPOINTS

PFS, OS, intracranial ORR and DoR, safety

O-3: Efficacy and safety of entrectinib in NTRK fusion-positive gastrointestinal cancers: updated integrated analysis of three clinical trials (STARTRK-2, STARTRK-1 and ALKA-372-001) – Patel M, et al

Key results

		GI tu	ımours		All Clashart
Efficacy	CCA (n=1)	CRC (n=7)	Other GI (n=1)	Pancreatic (n=3)	All GI cohort (n=12)
BOR, n (%)					
CR	0	0	0	0	0
PR	1 (100)	2 (29)	1 (100)	2 (67)	6 (50)
SD	0	0	0	1 (33)	1 (8)
PD	0	3 (43)	0	0	3 (25)
NE	0	2 (29)	0	0	2 (17)
ORR, %	1 (100)	2 (29)	1 (100)	2 (67)	6 (50)
Median DoR, mo (95%CI)	9.3 (NE)	15.1 (NE)	NE (NE)	10.0 (7.1, 12.9)	12.9 (7.1, 15.1)
DoR at 12 mo, %	NE	100	NE	50	53
mPFS, mo (95%CI)	12.0 (NE)	2.4 (1.0, 16.0)	NE (NE)	8.0 (6.2, 17.5)	7.1 (2.4, 16.0)
PFS at 12 mo, %	NE	29	NE	33	27
mOS, mo (95%CI)	NE (NE)	16.0 (2.4, NE)	NE (NE)	13.4 (11.2, NE)	16.0 (11.2, NE)

O-3: Efficacy and safety of entrectinib in NTRK fusion-positive gastrointestinal cancers: updated integrated analysis of three clinical trials (STARTRK-2, STARTRK-1 and ALKA-372-001) – Patel M, et al

Key results (cont.)

TRAEs in ≥10% patients, n (%)	Ov	erall GI safety population (n	n=16)
TRAES III 210% patients, ii (%)	Grade 1	Grade 2	Grade 3
Dysgeusia	5 (31.3)	1 (6.3)	0
Diarrhoea	2 (12.5)	3 (18.8)	0
Vomiting	4 (25.0)	0	0
Weight increased	1 (6.3)	0	2 (12.5)
Fatigue	2 (12.5)	0	1 (6.3)
Nausea	2 (12.5)	1 (6.3)	0
Dizziness	2 (12.5)	1 (6.3)	0
Myalgia	2 (12.5)	1 (6.3)	0
AST increased	0	2 (12.5)	0
ALT increased	0	2 (12.5)	0
Constipation	2 (12.5)	0	0
Dry mouth	2 (12.5)	0	0
Oral paresthesia	2 (12.5)	0	0
Hyperesthesia	2 (12.5)	0	0
Paraesthesia	2 (12.5)	0	0
Oedema peripheral	2 (12.5)	0	0
Oedema peripheral	2 (12.5)	0	0

Conclusions


• In patients with a range of NTRK fusion-positive GI carcinomas, treatment with entrectinib provided clinically meaningful responses and was generally well-tolerated

GIST

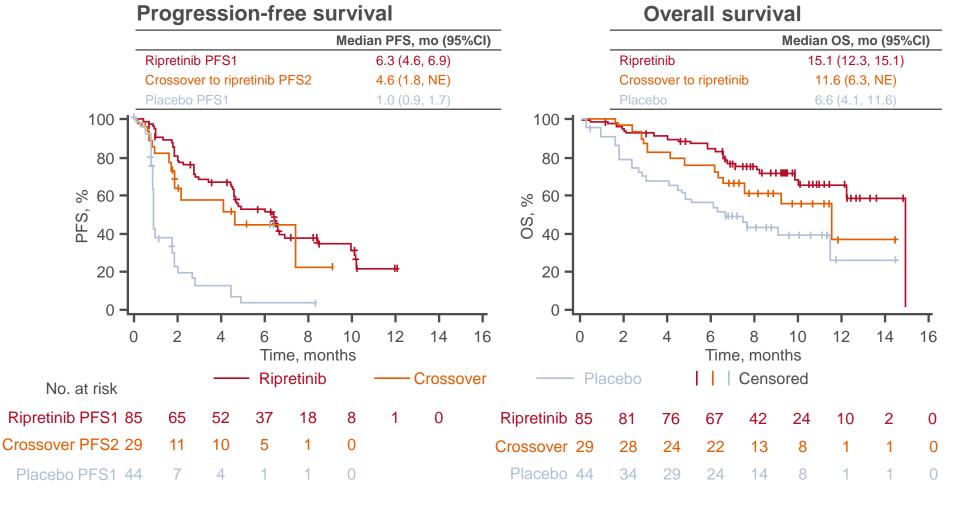
O-13: Efficacy and safety of ripretinib as ≥4th-line therapy for patients with gastrointestinal stromal tumor (GIST) following crossover from placebo: Analyses from INVICTUS – Serrano C, et al

Study objective

 To evaluate the efficacy and safety ripretinib, a tyrosine kinase switch control inhibitor, in heavily pre-treated patients with GIST

PRIMARY ENDPOINT

PFS (RECIST v1.1, BICR)


SECONDARY ENDPOINTS

ORR, OS, safety

Serrano C, et al. Ann Oncol 2020;31(suppl):abstr O-13

O-13: Efficacy and safety of ripretinib as ≥4th-line therapy for patients with gastrointestinal stromal tumor (GIST) following crossover from placebo: Analyses from INVICTUS – Serrano C, et al

Key results

O-13: Efficacy and safety of ripretinib as ≥4th-line therapy for patients with gastrointestinal stromal tumor (GIST) following crossover from placebo: Analyses from INVICTUS – Serrano C, et al

Key results (cont.)

	Open-label period	Double-blind period	
Grade 3/4 TEAEs, n (%)	Crossover to ripretinib (n=29)	Ripretinib (n=85)	Placebo (n=43)
Anaemia	6 (21.0)	8 (9.4)	6 (14.0)
Fatigue	3 (10.0)	3 (3.5)	1 (2.3)
Myalgia	0	1 (1.2)	0
Constipation	1 (3.4)	1 (1.2)	0
Abdominal pain	2 (6.9)	6 (7.1)	2 (4.7)
Appetite decreased	0	1 (1.2)	1 (2.3)

Conclusions

• In heavily pre-treated patients with GIST who crossed over from placebo, ripretinib demonstrated clinically meaningful benefit and was generally well-tolerated