GI SLIDE DECK 2017 Selected abstracts from:

7 Gastrointestinal Cancers Symposium 9–21 January 2017 | San Francisco, USA

Supported by Eli Lilly and Company. Eli Lilly and Company has not influenced the content of this publication

Letter from ESDO

DEAR COLLEAGUES

It is my pleasure to present this ESDO slide set which has been designed to highlight and summarise key findings in digestive cancers from the major congresses in 2017. This slide set specifically focuses on the **2017 Gastrointestinal Cancers Symposium** and is available in English, French and Japanese.

The area of clinical research in oncology is a challenging and ever changing environment. Within this environment, we all value access to scientific data and research which helps to educate and inspire further advancements in our roles as scientists, clinicians and educators. I hope you find this review of the latest developments in digestive cancers of benefit to you in your practice. If you would like to share your thoughts with us we would welcome your comments. Please send any correspondence to info@esdo.eu.

And finally, we are also very grateful to Lilly Oncology for their financial, administerial and logistical support in the realisation of this activity.

Yours sincerely,

Eric Van Cutsem Wolff Schmiegel Phillippe Rougier Thomas Seufferlein (ESDO Governing Board)

european society of digestive oncology

ESDO Medical Oncology Slide Deck Editors 2017

COLORECTAL CANCERS

Prof Eric Van Cutsem	Digestive Oncology, University Hospitals, Leuven, Belgium
Prof Wolff Schmiegel	Department of Medicine, Ruhr University, Bochum, Germany
Prof Thomas Gruenberger	Department of Surgery I, Rudolf Foundation Clinic, Vienna, Austria

PANCREATIC CANCER AND HEPATOBILIARY TUMOURS

Prof Jean-Luc Van LaethemDigestive Oncology, Erasme University Hospital, Brussels, BelgiumProf Thomas SeufferleinClinic of Internal Medicine I, University of Ulm, Ulm, Germany

GASTRO-OESOPHAGEAL AND NEUROENDOCRINE TUMOURS

Emeritus Prof Philippe RougierUniversity Hospital of Nantes, Nantes, FranceProf Côme LepageUniversity Hospital & INSERM, Dijon, France

BIOMARKERS

Prof Eric Van CutsemDigestive Oncology, University Hospitals, Leuven, BelgiumProf Thomas SeufferleinClinic of Internal Medicine I, University of Ulm, Ulm, Germany

Glossary

1L	first-line	GBC
2L	second-line	GEJ
AE	adverse event	GEP
AJCC	American Joint Committee on Cancer	GEMOX
ALT	alanine aminotransferase	GGT
AST	aspartate aminotransferase	GI
BICR	blinded-independent central review	Gy
bid	twice daily	HBV
BMI	body mass index	HCC
BOR	best overall response	HCV
BSC	best supportive care	HER2
CA19-9	carbohydrate antigen 19-9	
CI	confidence interval	HR
CISH	chromogenic in situ hybridisation	ICC
CR	complete response	IHC
CRC	colorectal cancer	IR
СТ	chemotherapy	ITT
DCR	disease control rate	iv
DFS	disease-free survival	mCRC
dMMR	deficient mismatch repair	MMR-P
DoR	duration of response	MRI
ECC	extrahepatic cholangiocarcinoma	MSI-H
ECOG	Eastern Cooperative Oncology Group	NA
ENETS	European Neuroendocrine Tumor	NCI
	Society	NCCN
EQ-5D	EuroQol five dimensions	
	questionnaire	NE
ERUS	endorectal ultrasound	NET
ESMO	European Society of Medical	NR
	Oncology	NS
(m)FOLFOX	(modified) leucovorin +	od
	5-fluorouracil + oxaliplatin	ORR

gallbladder cancer
gastro-oesophageal junction
gastroenteropancreatic
gemcitabine + oxaliplatin
gamma-glutamyl transpeptidase
gastrointestinal
Gray
hepatitis B virus
hepatocellular carcinoma
hepatitis C virus
human epidermal growth factor
receptor 2
hazard ratio
intrahepatic cholangiocarcinoma
immunohistochemistry
interventional radiology
intent-to-treat
intravenous
metastatic colorectal cancer
mismatch repair proficient
magnetic image resonance
high microsatellite instability
not available
National Cancer Institute
National Comprehensive Cancer
Network
not evaluable
neuroendocrine tumour
not reached
non-significant
once daily
overall/objective response rate

(m)OS pCR PD PD-L1 PET (m)PFS po PR PRO PS q(2/3/4)w QLQ-C30 QoL R R0/1 (m)RECIST RT SAE SBRT SD SF-36 SUV TACE TML TRAE TTR VAS VEGF	(median) overall survival pathological complete response progressive disease programmed death-ligand 1 positron emission tomography (median) progression-free survival orally partial response patient-reported outcome performance status every (2/3/4) week(s) quality of life questionnaire C30 quality of life questionnaire C30 quality of life approxement resection 0/1 (modified) Response Evaluation Criteria In Solid Tumors radiotherapy serious adverse event stereotactic body radiation therapy stable disease Short Form 36 standardised uptake value transarterial chemoembolisation tumour mutation load treatment-related adverse event time to response visual analogue scale vascular endothelial
VEGF	growth factor

Contents

 Cancers of the oesophagus and stomach 	<u>6</u>
 Cancers of the pancreas, small bowel and hepatobiliary tract 	26
 Pancreatic cancer 	27
- Hepatocellular carcinoma	34
 Biliary tract cancer 	<u>46</u>
 Neuroendocrine tumour 	<u>51</u>
Cancers of the colon, rectum and anus	57
 Colorectal cancer 	<u>58</u>
- Rectal cancer	81

Note: To jump to a section, right click on the number and 'Open Hyperlink'

CANCERS OF THE OESOPHAGUS AND STOMACH

Study objective

 To evaluate the use of determining early chemotherapy responsiveness by PET imaging to direct further therapy in patients with oesophageal and GEJ cancers

Key patient inclusion criteria

- Histologically confirmed oesophageal cancer
- AJCC v.7 staging: T1N1–3 or T2–4Nany
- Tumour SUV max ≥5 on baseline PET/CT
- Tumour resectable and able to be encompassed in an RT field

• ECOG PS 0–1 (n=257)

PRIMARY ENDPOINT

• Rate of pCR of PET non-responders

*Concurrent RT, 50.4 Gy in 28 fx

SECONDARY ENDPOINTS

- 8-month PFS among PET non-responders
- Comparison of PET response between induction arms
- Comparison of pCR, PFS and OS between induction arms and PET responders and non-responders

Key results

Treatment course by induction therapy

*Evaluable patients

Goodman KA, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 1

*One ypTON1 excluded

Key results (cont.)

Subgroup	n/N	pCR rate, % (95%Cl)
PET non-responders	14/78	18.0 (10, 28)
PET responders	31/120	26.0 (18, 35)
mFOLFOX6 induction	31/101	31.0 (22, 41)
Carboplatin/paclitaxel induction	14/97	14.4 (8, 23)
All patients	45/198	22.7 (17, 29)

Key results (cont.)

Grade ≥3 AEs at least possibly related to treatment

AE >5% prevalence in either arm, %	Induction mFOLFOX (n=118)	Induction carboplatin/paclitaxel (n=119)	Overall (n=237)
Anaemia	5	7	6
Neutropenia	11	14	13
Thrombocytopenia	5	8	7
Dysphagia	5	6	6
Nausea	8	9	8
Fatigue	9	3	6
Anorexia	6	3	4
Dehydration	4	5	5

Conclusions

- The use of PET imaging after a short course of induction chemotherapy in order to identify and switch poor responders to an alternate chemotherapy during pre-operative chemoradiation, is feasible in patients with oesophageal and GEJ cancers
- This protocol resulted in a pCR of 18% in those identified as PET non-responders and 38% in those who received induction mFOLFOX and concurrent RT
- The use of PET imaging allows the individualisation of multimodality therapy and may improve prognosis

Study objective

• To evaluate the efficacy and safety of nivolumab as salvage treatment after failure of the standard chemotherapy for advanced gastric cancer in the phase 3 ONO 12 study

Key patient inclusion criteria

- Unresectable advanced or recurrent gastric or GEJ cancer
- Histologically confirmed
- ≥2 prior regimens and refractory to or intolerant of standard therapy
- Age ≥20 years
- ECOG PS 0-1 (n=493)

PRIMARY ENDPOINT

• OS (ITT population)

*Treatment beyond initial RECIST v1.1-defined PD permitted if patient receiving clinical benefit and tolerating study drug

SECONDARY ENDPOINTS

 PFS, BOR, ORR, TTR, DoR, DCR, safety, biomarkers

Key results

OS

PFS

OC hu auharaun

Kov results (cont)

		05 by 9	subgroup		
Subgroup		HR (95%CI)	Subgroup		HR (95%CI)
All	H	0.64 (0.52, 0.80)	Histological type		
Country			(Lauren classification)		
Japan	I ♦–1	0.63 (0.46, 0.85)	Intestinal type	⊢∙−∣	0.59 (0.41, 0.85)
Korea		0.70 (0.51, 0.96)	Diffuse type		0.82 (0.57, 1.17)
Taiwan	⊢ ♦−−− 	0.46 (0.23, 0.92)	Mixed		0.37 (0.13, 1.04)
Age, years			Unknown	H+−1	0.56 (0.37, 0.84)
<65	₩.	0.75 (0.57, 0.98)	Number of organs with me	tastasis	
≥65	HH	0.53 (0.38, 0.74)	<2	⊢ ♦– <u>†</u> 1	0.70 (0.46, 1.08)
Sex			≥2	▶	0.61 (0.48, 0.78)
Male	HH I	0.58 (0.45, 0.75)	Peritoneal metastasis		
Female	⊢ ++-1	0.83 (0.56, 1.23)	No	H+H	0.63 (0.50, 0.81)
ECOG PS			Yes	I ♦ 1	0.74 (0.48, 1.15)
0	⊢ •−1	0.59 (0.40, 0.87)	Liver metastasis		
1	H+H	0.67 (0.52, 0.86)	No	H	0.63 (0.50, 0.80)
Prior gastrectomy			Yes	I → I	0.67 (0.42, 1.07)
No	⊢ ♦–	0.69 (0.49, 0.98)	Measurable lesion		
Yes	HH I	0.60 (0.46, 0.79)	No	⊢ ♦– <u>†</u> 1	0.70 (0.43, 1.14)
Primary sites			Yes	HH	0.63 (0.50, 0.80)
Gastric (fundus, corpus,	H	0.69 (0.55, 0.87)	Number of previous regime	ens	
antrum, and pylorus)			2		0.82 (0.50, 1.35)
Gastro-oesophageal juncti	on 🛏 📕	0.44 (0.20, 0.97)	3	I ♦↓	0.87 (0.61, 1.22)
Unknown	⊢ ♦—– <mark> </mark> I	0.52 (0.26, 1.06)	≥4	HH I	0.44 (0.31, 0.61)
	0 1	2 3		0 1	2 3
Favours n	ivolumab Fa	avours placebo	Favours	nivolumab Fa	vours placebo
	HR [9	95%CII		HR [9	5%CI1
					1 1

Characteristics	Nivolumab 3 mg/kg (n=268)	Placebo (n=131)
ORR, n (%) 95%Cl p-value	30 (11.2) 7.7, 15.6 <0.0001	0 0, 2.8
BOR, n (%) CR PR SD PD	0 30 (11.2) 78 (29.1) 124 (46.3)	0 0 33 (25.2) 79 (60.3)
DCR, n (%) 95%Cl p-value	108 (40.3) 34.4, 46.4 0.0036	33 (25.2) 18.0, 33.5 —
Median TTR, months (range)	1.61 (1.4–7.0)	—
Median DoR, months (95%CI)	9.53 (6.14, 9.82)	—
Tumour reduction, %	37.3	12.4

Key results (cont.)

Key	results	(cont.)
-----	---------	---------

Patients, n (%)	Nivolumab 3 mg/kg (n=330)		Placebo (n=161)	
	Any	Grade 3/4	Any	Grade 3/4
Any AEs SAEs AEs leading to discontinuation AEs leading to dose delay	300 (90.9) 131 (39.7) 23 (7.0) 63 (19.1)	137 (41.5) 91 (27.6) 13 (3.9) 40 (12.1)	135 (83.9) 75 (46.6) 12 (7.5) 27 (16.8)	63 (39.1) 47 (29.2) 9 (5.6) 17 (10.6)
AEs leading to death	35 (1	0.6)	25 (1	5.5)
Any TRAEs Serious TRAEs TRAEs leading to discontinuation TRAEs leading to dose delay	141 (42.7) 33 (10.0) 9 (2.7) 25 (7.6)	34 (10.3) 21 (6.4) 4 (1.2) 14 (4.2)	43 (26.7) 8 (5.0) 4 (2.5) 2 (1.2)	7 (4.3) 4 (2.5) 3 (1.9) 1 (0.6)
TRAEs leading to death	5 (1	.5)	2 (1	.2)

Key results (cont.)

TRAEs in >2% of patients	Nivolumab 3 mg/kg (n=330)		Placebo (n=161)	
receiving involuinab, ii (%)	Any	Grade 3/4	Any	Grade 3/4
Pruritus	30 (9.1)	0	9 (5.6)	0
Diarrhoea	23 (7.0)	2 (0.6)	3 (1.9)	0
Rash	19 (5.8)	0	5 (3.1)	0
Fatigue	18 (5.5)	2 (0.6)	9 (5.6)	2 (1.2)
Decreased appetite	16 (4.8)	4 (1.2)	7 (4.3)	1 (0.6)
Nausea	14 (4.2)	0	4 (2.5)	0
Malaise	13 (3.9)	0	6 (3.7)	0
AST increased	11 (3.3)	2 (0.6)	3 (1.9)	0
Hypothyroidism	10 (3.0)	0	1 (0.6)	0
Pyrexia	8 (2.4)	1 (0.3)	3 (1.9)	0
ALT increased	7 (2.1)	1 (0.3)	1 (0.6)	0

Conclusions

- Nivolumab demonstrated efficacy and safety as a third or later line of treatment in patients with advanced gastric cancer
- Compared with placebo, nivolumab had superior OS and response rates and was well-tolerated

3: Efficacy and safety of ramucirumab (RAM) for metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma across age subgroups in two global phase 3 trials – Muro K, et al

Study objective

 To assess the efficacy and safety of ramucirumab across a range of age groups from the REGARD and RAINBOW studies

 OS, PFS, safety by age subgroups (≤45 years, >45–<70 years, ≥70 years and ≥75 years [subgroup of ≥70 years]) 3: Efficacy and safety of ramucirumab (RAM) for metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma across age subgroups in two global phase 3 trials – Muro K, et al

3: Efficacy and safety of ramucirumab (RAM) for metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma across age subgroups in two global phase 3 trials – Muro K, et al

Conclusion

• The benefits of ramucirumab treatment were evident in young and elderly populations in the REGARD and RAINBOW studies, with comparable toxicity profiles across age groups

4: A randomized, double-blind, multicenter phase III study evaluating paclitaxel with and without RAD001 in patients with gastric cancer who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC) – Al-Batran S-E, et al

Study objective

To evaluate RAD001 + paclitaxel in patients with gastric carcinoma who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen in the RADPAC study

*Recruitment stopped early for low accrual

4: A randomized, double-blind, multicenter phase III study evaluating paclitaxel with and without RAD001 in patients with gastric cancer who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC) – Al-Batran S-E, et al

Key results

PFS

Al-Batran S-E, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 4

4: A randomized, double-blind, multicenter phase III study evaluating paclitaxel with and without RAD001 in patients with gastric cancer who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC) – Al-Batran S-E, et al

RAD001 + paclitaxel (n=143)	Placebo + paclitaxel (n=147)
18 (13)	18 (12)
10 (7)	10 (7)
19 (13)	1 (1)
9 (6)	5 (4)
9 (6)	5 (4)
10 (7)	14 (10)
15 (11)	12 (8)
10 (7)	11 (8)
7 (5)	10 (7)
10 (7)	13 (9)
	RAD001 + paclitaxel (n=143) 18 (13) 10 (7) 19 (13) 9 (6) 9 (6) 10 (7) 15 (11) 10 (7) 7 (5) 10 (7)

Key results (cont.)

Conclusions

- Compared with paclitaxel alone, RAD001 in combination with paclitaxel did not improve outcomes
- Some activity with the addition of RAD001 was seen in the taxane-pretreated subgroup

Al-Batran S-E, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 4

CANCERS OF THE PANCREAS, SMALL BOWEL AND HEPATOBILIARY TRACT

Cancers of the pancreas, small bowel and hepatobiliary tract

PANCREATIC CANCER

Study objective

 To review phase 2 trials in advanced metastatic pancreatic cancer to identify characteristics associated with progression of phase 2 agents to phase 3 testing and to determine the correlation between outcomes of phase 2 and phase 3 trials

Methods

 Medline and clinicaltrials.gov were searched for phase 2 trials of 1L systemic treatment in advanced metastatic pancreatic cancer

Key results

- 148 phase 2 studies between 1978 and 2015 were identified
 - 7505 patients in 180 arms
 - 25 (16.9%) multi-arm trials
 - 18 (12.2%) randomised controlled trials
 - 37 (25%) trials tested biological agents
 - Limited reporting of prognostic factors
- Primary endpoint defined in 68.9% of trials
 - 41.2% ORR
 - 15.5% PFS
 - 10.1% OS
 - 2.0% Clinical benefit
- Phase 2 trial outcomes
 - 55.4% reported as successful by investigators
 - 26.4% specified and achieved target effect size
 - 14.9% proceeded to phase 3 testing

Key results (cont.)

Achievement of target effect size and relationship to phase 2 trial outcome and phase 3 testing

Pre-specified target effect size in phase 2 — trial, n (%)	Investigator-determined phase 2 trial outcome		Actual phas	Actual phase 3 testing	
	Negative (n=66)	Positive (n=82)	No (n=126)	Yes (n=22)	
Target effect size achieved	6 (9.1)	33 (40.2)	30 (23.8)	9 (40.9)	
Target effect size not achieved	36 (54.6)	19 (23.2)	51 (40.5)	4 (18.2)	
Target effect size not specified	21 (31.8)	27 (32.9)	40 (31.8)	8 (36.4)	
Ambiguous target effect size	3 (4.6)	3 (3.7)	5 (4.0)	1 (4.6)	

Key results (cont.)

Characteristics associated with progression to phase 3 testing

Characteristic, n (%)	No phase 3 testing	Phase 3 testing	p-value	
Patients with ECOG PS 0-1	114 (78.9)	19 (84.7)	0.26	
Patients with locally advanced cancer only	119 (16.2)	20 (22.0)	0.14	
Mean sample size of phase 2 trial	126 (49.0)	22 (60.5)	0.19	
Mean objective tumour response	126 (17.6)	22 (23.7)	0.05	
Mean patient recruitment duration, months	101 (25.3)	19 (17.3)	0.03	
Non-randomised design	111 (88.1)	19 (86.4)	0.00	
Randomised design	15 (11.9)	3 (13.6)	0.82	
Target effect size not achieved or unspecified	96 (76.2)	13 (59.1)	0.10	
Target effect size achieved	30 (23.8)	9 (40.9)	0.10	

Key results (cont.)

• 27 investigational agents tested in phase 2 and phase 3 trials

Conclusions

- Advanced metastatic pancreatic phase 2 trials do not conform with NCI recommendations
 - Inconsistent prognostic factor reporting
 - Heterogeneity in baseline prognostic factors
 - Few trials enrich for biomarker targets
 - Poor statistical reporting in early trials
 - Investigator-reported success or progression to phase 3 does not correlate with achievement of statistical target effect size
- The limited success of trials in advanced metastatic pancreatic cancer may be explained by these findings

Cancers of the pancreas, small bowel and hepatobiliary tract

HEPATOCELLULAR CARCINOMA

223: A randomized phase II study of individualized stereotactic body radiation therapy (SBRT) versus transarterial chemoembolization (TACE) with DEBDOX beads as a bridge to transplant in hepatocellular carcinoma (HCC) – Nugent FW, et al

Study objective

 To compare stereotactic body radiation therapy (SBRT) to transarterial chemoembolisation (TACE) as a bridge to transplant in hepatocellular carcinoma

R

Key patient inclusion criteria

- Eligible for liver transplant
- Within Milan criteria
- ≤2 tumours
- Child-Pugh Class A/B (<9)
- Bilirubin <3.0 mg/dL
- Adequate haematological parameters

(n=30)

PRIMARY ENDPOINT

Time to residual or recurrent disease

SBRT

Fiducial marker placement by IR, outpatient treatment every other day for 5 treatments, radiation dose determined to limit volume of treated liver and risk of complications, total dose 40–50 Gy in 5 fractions (n=13)

TACE

2 treatments 1 month apart DEBDOX[®] beads: 2 vial each treatment, max 100 mg doxorubicin/treatment (n=17)

SECONDARY ENDPOINTS

 Toxicity, QoL, radiologic and pathologic response 223: A randomized phase II study of individualized stereotactic body radiation therapy (SBRT) versus transarterial chemoembolization (TACE) with DEBDOX beads as a bridge to transplant in hepatocellular carcinoma (HCC) – Nugent FW, et al

Key results

Toxicity grade ≥2, n	SBRT Follow-up 2 weeks post-SBRT (n=13)	TACE Follow-up after TACE x2 (n=17)
Anorexia	0	5
Fatigue	0	6
Nausea	3	5
Pain	0	5
Main portal vein thrombus	0	1*
Liver infarction	0	1*

Nugent FW, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 223
223: A randomized phase II study of individualized stereotactic body radiation therapy (SBRT) versus transarterial chemoembolization (TACE) with DEBDOX beads as a bridge to transplant in hepatocellular carcinoma (HCC) – Nugent FW, et al

Key results (cont.)

Quality of life			
SF-36 questionnaire,	SBRT	TACE	
change from baseline	(n=12)	(n=17)	
Physical	-0.7±7.4 (n=12)	-2.7±4.3 (n=15)	
	(95%CI -5.4, 4.1)	(95%CI -5.1, -0.3)	
Mental	-0.6±9.0 (n=12)	-2.6±4.6 (n=15)	
	(95%CI –6.3, 5.1)	(95%CI -5.1, -0.0)	

223: A randomized phase II study of individualized stereotactic body radiation therapy (SBRT) versus transarterial chemoembolization (TACE) with DEBDOX beads as a bridge to transplant in hepatocellular carcinoma (HCC) – Nugent FW, et al

Key results (cont.)

Time to residual/recurrent disease

	SBRT (n=13)	TACE (n=17)
Patients with residual disease, n (%)	0	2 (24)
Time to residual disease from last treatment date, days	N/A	Median: 83 Range: 50–141

- Explant data
 - TACE: 6 transplanted, 3 with residual disease
 - SBRT: 5 transplanted, 2 with residual disease

223: A randomized phase II study of individualized stereotactic body radiation therapy (SBRT) versus transarterial chemoembolization (TACE) with DEBDOX beads as a bridge to transplant in hepatocellular carcinoma (HCC) – Nugent FW, et al

Conclusions

- When used as a bridge to transplant in Child-Pugh A/B patients, SBRT and TACE are equivalent in controlling the treated lesion
- SBRT may result in less acute toxicity and better QoL

Study objective

 To evaluate the safety, efficacy and exploratory biomarkers in patients with advanced HCC treated with nivolumab – updated interim results of the CheckMate 040 study

Key patient inclusion criteria

- Advanced HCC not amenable to curative resection
- Child-Pugh ≤7 (escalation) or ≤6 (expansion)
- Progression on 1 prior systemic therapy or intolerant or refused sorafenib
- With or without HCV or HBV (n=262)

PRIMARY ENDPOINTS

- Safety and tolerability (dose escalation)
- ORR by RECIST v1.1 (dose expansion)

Dose escalation phase Nivolumab 0.1–10 mg/kg q2w (n=48)

Uninfected (n=23) HCV infected (n=10) HBV infected (n=15) Sorafenib experienced (2L) (n=37) Sorafenib naïve (1L) (n=11) Dose expansion phase Nivolumab 3 mg/kg q2w (n=214)

Uninfected (n=113) HCV infected (n=50) HBV infected (n=51) Sorafenib experienced (2L) (n=145) Sorafenib naïve (1L) (n=69)

SECONDARY ENDPOINTS

• ORR, DCR, TTR, DoR, OS, biomarker, PROs

Key results

	Investigator assessment		BICR	
BOR in soratenib experienced (2L), n (%)	Escalation	Expansion	Escalation	Expansion
	(n=37)	(n=145)	(n=37)	(n=145)
Objective response by RECIST v1.1	6 (16.2)	27 (18.6)	7 (18.9)	21 (14.5)
CR	3 (8.1)	3 (2.1)	1 (2.7)	1 (0.7)
PR	3 (8.1)	24 (16.6)	6 (16.2)	20 (13.8)
SD	16 (43.2)	66 (45.5)	12 (32.4)	59 (40.7)
PD	12 (32.4)	46 (31.7)	13 (35.1)	56 (38.6)
Not evaluable	3 (8.1)	6 (4.1)	4 (10.8)	9 (6.2)
Objective response by mRECIST	_	_	8 (21.6)	27 (18.6)

BOR in sorafenib naïve (1L), n (%)	Expansion (n=69)
Objective response	15 (21.7)
CR	0
PR	15 (21.7)
SD	30 (43.5)
PD	22 (31.9)
Not evaluable	2 (2.9)

^aData cut-off August 8, 2016. NC, not available/not calculated

Responses were observed irrespective of PD-L1 expression on tumour cells

Key results (cont.)								
Patients n (%)	Uninfected (n=113)		HCV (n=50)		HBV (n=51)		All (n=214)	
	Any	Grade 3/4	Any	Grade 3/4	Any	Grade 3/4	Any	Grade 3/4
Any TRAE	84 (74)	22 (19)	40 (80)	15 (30)	35 (69)	3 (6)	159 (74)	40 (19)
TRAEs in ≥5% Fatigue Pruritus Rash Diarrhoea Nausea Dry mouth Decreased appetite	34 (30) 18 (16) 16 (14) 19 (17) 10 (9) 9 (8) 6 (5)	2 (2) 0 2 (2) 2 (2) 0 0 0	8 (16) 14 (28) 9 (18) 5 (10) 6 (12) 2 (4) 2 (4)	1 (2) 1 (2) 0 0 0 0 1 (2)	7 (14) 13 (25) 8 (16) 3 (6) 1 (2) 2 (4) 3 (6)	0 0 1 (2) 0 0	49 (23) 45 (21) 33 (15) 27 (13) 17 (8) 13 (6) 11 (5)	3 (1) 1 (<1) 2 (1) 3 (1) 0 0 1 (<1)
Laboratory TRAEs in ≥5% AST increased ALT increased	9 (8) 7 (6)	4 (4) 2 (2)	6 (12) 7 (14)	5 (10) 3 (6)	1 (2) 3 (6)	0 0	16 (7) 17 (8)	9 (4) 5 (2)

Conclusion

 Nivolumab monotherapy in sorafenib-experienced and -naïve patients advanced HCC demonstrated objective responses with no new safety signals

Cancers of the pancreas, small bowel and hepatobiliary tract

BILIARY TRACT CANCER

Study objective

 To assess the efficacy and safety of adjuvant GEMOX vs. surveillance in patients with biliary tract cancer

R

1:1

Key patient inclusion criteria

- Biliary tract cancer (ICC/ECC/GBC)
- R0 or R1 surgery
- ECOG PS 0-2
- Adequate liver function
- Randomisation within 3 months of surgery

PRIMARY ENDPOINTS

Relapse-free survival, QoL

SECONDARY ENDPOINTS

• OS, DFS, toxicity

(n=99)

Key results

Relapse-free survival GEMOX Surveillance Median, months 30.4 22.0 1.00 (95%CI) (15.4, 45.8)(13.6, 38.3)HR 0.83 (95%CI 0.58, 1.19); p=0.31 4-year relapse-free survival, % 39.3 33.2 0.75 Survival rate, % (95%CI) (28.4, 50.0)(23.1, 43.7)0.50 0.25 Log-rank p=0.3130 0 12 24 36 72 0 48 60 No. at risk Time, months GEMOX 94 60 46 29 18 9 2 1 Surveillance 99 64 44 31 14 5

Relapse-free survival

Key results (cont.)

Relapse-free survival in predefined subgroups

Edeline J, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 225

• The main grade 3/4 toxicities were GGT increase, alkaline phosphatase increase, peripheral sensitive neuropathy and neutrophils

Conclusions

- Relapse-free survival did not differ between GEMOX and surveillance
- Adjuvant GEMOX had no detrimental effect on QoL; toxicity was as expected and manageable

Cancers of the pancreas, small bowel and hepatobiliary tract

NEUROENDOCRINE TUMOUR

228: Phase II trial of cabozantinib in patients with carcinoid and pancreatic neuroendocrine tumors (pNET) – Chan JA, et al

Study objective

 To evaluate the efficacy and safety of cabozantinib in patients with advanced carcinoid or pancreatic NETs

*28 day cycle, restaging every 2 cycles for the first 6 cycles, then every 3 cycles

Chan JA, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 228

228: Phase II trial of cabozantinib in patients with carcinoid and pancreatic neuroendocrine tumors (pNET) – Chan JA, et al

*Treatment stopped prior to restaging

Chan JA, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 228

228: Phase II trial of cabozantinib in patients with carcinoid and pancreatic neuroendocrine tumors (pNET) – Chan JA, et al

Key results (cont.)

Events occurring ≥5%, n (%)	Grade 3/4
Hypertension	8 (13)
Hypophosphatemia	7 (11)
Diarrhoea	6 (10)
Lipase or amylase increase	4 (7)
Lymphocyte decrease	4 (7)
Fatigue	3 (5)
Thrombocytopenia	3 (5)

Grade 3/4 TRAEs

Conclusions

- Cabozantinib treatment of carcinoid and pancreatic NETs resulted in PRs of 15% in both groups, with mPFS of 31 months (carcinoid) and 22 months (pancreatic NETs)
- Toxicity was consistent with other studies

224: Development of follow up recommendations for completely resected gastroenteropancreatic neuroendocrine tumours (GEP-NETS): Practice Survey of Commonwealth Neuroendocrine Tumour Collaboration (CommNETS) in conjunction with North American Neuroendocrine Tumour Society (NANETS) – Singh S, et al

Study objective

• To examine real-world practice patterns compared with published guidelines for follow-up in patients with gastroenteropancreatic neuroendocrine tumours (GEP-NETs)

Methods

- An electronic cross-sectional survey was developed and distributed to members of the Commonwealth Neuroendocrine Tumour Collaboration (CommNETS) and the North American Neuroendocrine Tumour Society (NANETS)
- Questions were regarding:
 - Demographics
 - Knowledge and use of guidelines
 - Follow-up practices according to various prognostic factors
- Descriptive statistics were reported, and results were stratified by country, patient volume and specialty

Key results

- There were 163 respondents:
 - 59 from Australia, 25 from New Zealand, 46 from Canada and 33 from US
 - 50% were medical oncologists, 23% were surgeons, 13% from nuclear medicine and 14% others
 Note: Based on data from abstract only

Note: Based on data from abstract only

Singh S, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 224

224: Development of follow up recommendations for completely resected gastroenteropancreatic neuroendocrine tumours (GEP-NETS): Practice Survey of Commonwealth Neuroendocrine Tumour Collaboration (CommNETS) in conjunction with North American Neuroendocrine Tumour Society (NANETS) – Singh S, et al

Key results (cont.)

- 38% responded that they were 'very familiar' with NET guidelines from NCCN; 33% for ENETS guidelines and 17% for ESMO guidelines
 - The NCCN, ENETS and ESMO guidelines were described as 'very useful' by 15%, 27% and 10% respondents, respectively
- 63% reported not using guidelines at their institution
- Grade and Ki67/mitotic count were considered the most important prognostic factors
- During the first 2 years of follow-up, every 6 months was the most common frequency (62%), for years 3–5 it was every 12 months (59%), and every 12 months was also the most common for >5 years (41%)
- The most common investigations were computed tomography scans (66%) and CgA (86%)
- When considering poor prognostic factors, an increase to the visits and tests were recommended

Conclusion

• The results from this survey highlight the variation in follow-up practices in the real-world

Note: Based on data from abstract only Singh S, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 224

CANCERS OF THE COLON, RECTUM AND ANUS

Cancers of the colon, rectum and anus

COLORECTAL CANCER

Study objective

• To evaluate the efficacy and safety of nivolumab monotherapy in patients with metastatic/recurrent CRC in the CheckMate 142 study

Key results

Patients, n (%)	dMMR/MSI-I laborator	H per local y (n=74)	dMMR/MSI-H per central laboratory (n=53)		
	Investigator	BICR	Investigator	BICR	
ORR	23 (31.1)	20 (27.0)	19 (35.8)	17 (32.1)	
95%CI	20.8, 42.9	17.4, 38.6	23.1, 50.2	19.9, 46.3	
Best overall response					
CR	0	2 (2.7)	0	1 (1.9)	
PR	23 (31.1)	18 (24.3)	19 (35.8)	16 (30.2)	
SD	29 (39.2)	28 (37.8)	21 (39.6)	21 (39.6)	
PD	18 (24.3)	20 (27.0)	10 (18.9)	12 (22.6)	
Unable to determine	4 (5.4)	6 (11.1)	3 (5.7)	3 (5.7)	
Disease control for ≥12 weeks	51 (68.9)	46 (62.2)	39 (73.6)	37 (69.8)	

Key results (cont.)

PFS

Overman MJ, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 519

Key results (cont.)

Tumour PD-L1 expression

ORR, n/N (%)	Investigator	BICR
Tumour PD-L1 expression ≥1% <1%	6/21 (28.6) 13/45 (28.9)	7/20 (35.0) 11/45 (24.4)

BRAF mutation status

ORR, n/N (%)	Investigator	BICR
BRAF mutation status Mutant Wild type	3/12 (25.0) 12/28 (42.9)	2/12 (16.7) 9/27 (33.3)
KRAS mutation status Mutant Wild type	7/26 (26.9) 12/28 (42.9)	6/26 (23.1) 9/27 (33.3)

Overman MJ, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 519

Key results (cont.)

	All patients (n=74)		
Patients, n (%)	Any grade	Grade 3–4	
Any TRAE	51* (68.9)	15 (20.3)	
TRAE reported in ≥10% of patients			
Fatigue	17 (23.0)	1 (1.4)	
Diarrhoea	16 (21.6)	1 (1.4)	
Pruritus	10 (13.5)	0	
Lipase increased	9 (12.2)	6 (8.1)	
Rash	8 (10.8)	0	

- Five (6.8%) patients discontinued therapy due to adverse events
- No deaths were reported due to study drug toxicity

*One grade 5 event of sudden death, not attributed to study drug toxicity

Overman MJ, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 519

Key results (cont.)

Conclusion

 Monotherapy with nivolumab in patients with dMMR/MSI-H mCRC provided durable responses and long-term survival, with clinically meaningful improvements in QoL and a safety profile consistent with that previously reported

Study objective

 To assess the efficacy and safety of cetuximab + irinotecan + vemurafenib in patients with BRAF-mutant mCRC

*Cetuximab 500 mg/m² iv q2w, irinotecan 180 mg/m² iv q2w, vemurafenib 960 mg po bid

Kopetz S, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 520

PFS

Key results

Kopetz S, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 520

Key results (cont.)	Grade 3/4 AEs	
Patients, n (%)	Cetuximab + irinotecan (n=46)	Cetuximab + irinotecan + vemurafenib (n=46)
Anaemia	0 (0)	6 (13)
Dehydration	2 (4)	5 (11)
Diarrhoea	5 (11)	10 (22)
Febrile neutropenia	2 (4)	5 (11)
Fatigue	7 (15)	7 (15)
Neutropenia	3 (7)	13 (28)
Rash	3 (7)	2 (4)
Hypomagnesemia	2 (4)	0 (0)
Nausea	0 (0)	7 (15)
Arthralgia	0 (0)	3 (7)
Discontinued due to AE	4/50 (8)	9/49 (18)

Kopetz S, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 520

Key results (cont.)

Conclusions

- In patients with BRAF mutant CRC, cetuximab + irinotecan + vemurafenib improved PFS
- Neutropenia, anaemia and nausea were the notable toxicities and are similar to a previous study

Study objective

 Retrospective analysis to identify the molecular variations among left-sided CRC tumours (rectal, sigmoid colon and descending colon including splenic flexure)

Significant difference between sigmoid colon and descending colon tumours (p<0.05)
No significant differences between rectal and sigmoid colon tumours

Key results (cont.)

Marshall J, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 522

Key results (cont.)

- TML was calculated using only somatic non-synonymous missense mutations sequenced with a 592-gene panel
- No significant difference was seen between the three cohorts
522: Molecular variances between rectal and left-sided colon cancers – Marshall J, et al

 \star Significant difference between rectal and right-sided colon tumours (p<0.05)

Marshall J, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 522

522: Molecular variances between rectal and left-sided colon cancers – Marshall J, et al

Conclusions

- There is a continuum of molecular alterations from left to right in CRC
- Molecular features in rectal cancers are different from those in left-sided colon tumours

Study objective

 To evaluate whether the 12-gene oncotype DX score and/or CDX2 status correlate with primary tumour location, and whether location reflects differential prognosis in stage II and stage III CRC

Methods

- Retrospective analysis of patients with T3 MMR-P stage II CRC for whom the 12-gene assay was performed, and a subgroup of patients with stage III CRC
- CDX2 expression reviewed in those diagnosed in 2016

Key results

• In stage II tumours, recurrence score was higher in right-sided tumours

Key results (cont.)

• Recurrence score gradually decreased across the colon

Key results (cont.)

- Right-sided tumours exhibited more CDX2-negative tumours then left-sided tumours
- CDX2-negative tumours had a higher oncotype DX score

	Right-side, n (%)	Left-side, n (%)		Mean oncotype	Standard deviation
CDX2-positive	34 (64.2)	47 (83.9)	CDV2 positivo	24.42	10.20
CDX2-negative	19 (35.8)	9 (16.1)	CDX2-positive	24.42	10.30
		0 (1011)	CDX2-negative	32.00	12.686
Total (n=109)	53	56			n - 0.020
		p=0.029			p=0.020

Key results (cont.)

• In stage III tumours, recurrence score was higher in right-sided tumours than left-sided tumours, and higher than stage II tumours

Ben-Aharon I, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 523

Key results (cont.)

• Recurrence scores for stage II and III rectal cancer were higher than left-sided tumours

	n	Mean score
Stage II left colon	596	25.79
Stage II rectal	78	27.06*
Stage III left colon	72	24.6
Stage III rectal	14	27.15**

*p=0.04; **p=0.05

Conclusion

• These results indicate that in MMR-P stage II CRC, right-sided tumours may display worse prognosis compared with left-sided tumours using these prognostic tools

Cancers of the colon, rectum and anus

RECTAL CANCER

521: The International Watch & Wait database (IWWD) for rectal cancer: An update – van der Valk M, et al

Study objective

• To assess the characteristics of patients with rectal cancer included in the International Watch and Wait database (IWWD)

Methods

- An international, multicentre, observational study
- As of August 2016, 775 patients from 11 countries were included in the database
 - 679 (90%) patients were included due to a clinical complete response, all other patients were excluded from this analysis

521: The International Watch & Wait database (IWWD) for rectal cancer: An update – van der Valk M, et al

Key results

Characteris	stic, n (%)	Patients (n=679)
Sex, male		449 (66)
Mean age, y	vears	63.6
Mean BMI, kg/m ²		26.7
Imaging	Endo/rectoscopy MRI ERUS Computed tomography-pelvis	598 (87) 434 (64) 42 (6) 172 (25)
T stage	cT1 cT2 cT3 cT4	13 (2) 146 (28) 335 (64) 27 (5)
N stage	cN0 cN1 cN2	208 (40) 185 (35) 132 (25)
M stage	M0 M+	635 (99) 8 (1)

Note: Based on data from abstract only

van der Valk M, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 521

521: The International Watch & Wait database (IWWD) for rectal cancer: An update – van der Valk M, et al

Key results (cont.)

- In 90% of cases induction treatment consisted of chemo-radiotherapy
- Median follow-up time was 2.6 years (range 0–24)
- Local regrowth occurred in 167 (25%) patients
 - 84% of which occurred in the first 2 years of follow-up
 - Local regrowth was endoluminal in 161 (96%) and in the loco-regional lymph nodes in 7 (4%)
- Distant metastasis occurred in 49 (7%)
- The 3-year OS rate was 91%
 - 87% for patients with local regrowth

Conclusion

• This is the largest database of patients with rectal cancer where surgery was omitted after induction therapy, and illustrates differences in imaging and induction therapy

Note: Based on data from abstract only van der Valk M, et al. J Clin Oncol 2017; 35 (suppl 4): abstr 521